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Emergence of cooperative behaviour requires the evolution of

proximate mechanisms to overcome the conflict of fitness

interests inherent in social interactions. Reciprocal trading and

enforcement of help are means by which cooperation can

ensue between social partners subject to conflicting fitness

interests. We discuss potential routes to the evolution of

mechanisms of cooperative behaviour, with a special focus on

vertebrates. We emphasize that a stable social organization,

the exertion of social control and the experience-based

propensity to act cooperatively are fundamental building

blocks of cooperation. Genetic, neural and endocrine

mechanisms involved in the regulation of cooperative

behaviour are apparently deeply conserved in the phylogenies

of different taxonomic groups. At the same time, the functions

of regulatory systems diverge enormously between taxa,

revealing functional independence and modular evolution of

key components at both genetic and physiological levels.
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The evolution of proximate mechanisms of
behaviour
Evolution-oriented behavioural biology is currently

experiencing a paradigm shift from a rather narrow focus

on the functions and adaptive nature of traits to a more

comprehensive approach incorporating psychological,

physiological, genetic, ontogenetic and epigenetic mech-

anisms [1,2]. This reflects a recollection of the initial aims

of ethology, which have been aptly summarized in Niko

Tinbergen’s seminal paper on that theme [3]. The recent

urge for a more comprehensive understanding of behav-

iour, after a period in which ‘behavioural ecology’ with its

tight slant on adaptive value has dominated the field,
Current Opinion in Behavioral Sciences 2015, 6:132–138 
coincides with methodological developments now allow-

ing researchers to ask questions about regulatory mecha-

nisms at physiological and genetic levels, that is

unprecedented [4,5,6��]. This broader approach to study-

ing behaviour enables us, for the first time in the history of

the biological study of behaviour, to address the pertinent

question about the evolution of proximate mechanisms un-

derlying behaviour [2,7��].

An integrative approach to the study of social
behaviour
Animals regularly interact with conspecifics, which can be

both each other’s strongest allies and fiercest competitors

for resources. The resulting conflict and cooperation

characterizing many intraspecific interactions selects for

adequate responses to the behaviour of social partners

[8��]. Like any other behavioural trait, these interactions

are the products of genetic and physiological mechanisms

that affect Darwinian fitness and evolve via natural selec-

tion [6��]. Comparative analyses suggest that in both

social insects and vertebrates, regulatory elements of

social behaviour at genetic and (neuro)physiological

levels are remarkably conserved [7��,9,10��]. Hence it

seems obvious to ask whether and to which extent the

evolution of cooperative behaviour, arguably the conun-

drum of Darwinian rationale, is influenced by the func-

tionality and constraints of underlying genetic,

epigenetic, endocrine, and neural mechanisms.

Where do we find cooperation, and how can it
evolve?
Cooperation refers to the simultaneous or consecutive

acting together of two or more individuals by same or

different behaviours. It can evolve when all partners of a

cooperative action obtain a fitness benefit from their

behaviour, that is when the fitness benefits of the action

outweigh its costs in the short or long term to each

participant either by mutualism, reciprocity or correlated

pay-offs (e.g., involving relatedness). Alternatively, the

behaviour may be beneficial only to the receiver of a

cooperative act, who can coerce another individual to

behave cooperatively. In mutualistic interactions, there

is typically no conflict of fitness interest between social

partners, because the behaviour straightforwardly raises

the direct fitness of the actor [11]. A familiar example of

mutualistic interactions is group hunting, where individ-

uals share forces to obtain prey, which typically provides a

net benefit to all participants [12]. In case of mutualistic

interactions the mechanisms of the involved behaviours

can evolve by the same principles as any non-cooperative
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behaviour, because the potential fitness consequences to

a social partner hardly matter. By the same token, if

individuals act cooperatively towards others because their

fitness pay-offs are correlated due to relatedness between

them, that is because the behaviour is selected by indirect

fitness benefits to the cooperator, there is usually little

conflict of fitness interests. This applies for instance to

many cooperatively breeding birds (e.g. [13]). More in-

teresting for the question how the mechanisms control-

ling cooperative behaviour can evolve is the case where

there is a distinct conflict of fitness interests between the

involved parties. In that case, behavioural mechanisms

will be selected that maximize the benefits of one party at

the expense of another [14]. We shall further focus on this

possibility.

If there is a conflict of fitness interests between social

partners, cooperation can evolve by reciprocity or coer-

cion. Individuals may receive fitness returns by coopera-

tion if their interaction partners pay back received help,

either concurrently or in the future. Reciprocal coopera-

tion or ‘trading’ of that kind usually involves negotiation

between social partners [15], which involves rules that are

subject to selection [16,17]. Reciprocity and trading re-

quire a number of cognitive abilities, including individual

(or ‘class’) recognition, the ability to relate the behaviour

of others to own pay-offs, and a certain degree of social

memory. The requirement for social memory depends on

whether actions and reactions occur concurrently (‘coac-

tion’) or with some time lag (‘reciprocity’ [18�]). Reci-

procity and trading has been demonstrated in a wide range

of vertebrates, from fish to mammals [19–22]. Social bonds

can favour such exchanges of cooperative behaviours [23].

Both the neuroendocrine ‘social behaviour network’ in-

volving steroid and neuropeptide hormones, and the meso-

limbic reward system involving dopaminergic signalling

pathways constitute important regulatory mechanisms re-

sponsible for the concerned behaviours [4,7��].

A much simpler form of reciprocal cooperation can ensue

if individuals ‘return’ received help to others, that is not to

the individual from which they received help. Such

‘generalized reciprocity’ has been shown to afford evolu-

tionarily stable levels of cooperation under a wide range of

conditions (e.g. [24,25]). This cooperation mechanism is

particularly intriguing because it does not require specific

cognitive abilities, except the recognition of received

help [26,27]. Hitherto it has been experimentally dem-

onstrated in rats, monkeys and humans, but because of its

mechanistic simplicity, it is expected to be much more

widespread [26,28,29]. In vertebrates, neuroendocrine

regulation of generalized reciprocity may be mediated

primarily by the nonapeptide system, particularly oxyto-

cin or its orthologs [30–32].

One social partner forcing another one to cooperate con-

stitutes the second possibility to generate cooperative
www.sciencedirect.com 
behaviour among social partners subject to a conflict of

fitness interests. Enforced cooperation can be evolution-

arily stable if the costs to avoid such manipulation are

higher for an individual than to accept being exploited.

The generation of cooperation by this means requires

some sort of dominance asymmetry between social part-

ners, the ability of the receiver of enforcement to respond

appropriately to the dominant’s demand, and the ability

of the dominant to accept the resulting cooperation as

consummatory response. Enforced cooperation occurs in

a wide range of taxa and contexts [33–38]. Steroid hor-

mones are important regulatory components of social

interactions based on dominance asymmetries, which

can affect the cooperation propensity of subordinates

[39–41].

Hitherto, cooperation between social partners with a

conflict of fitness interests has been studied mainly

regarding its mode of action and its potential adaptive

value, without considering underlying psychological,

physiological and genetic mechanisms. If we wish to

fully understand the evolution of cooperation, however,

we need to unravel the required components, the

involved decision rules, the ecological functionality,

potential synergistic effects and eco-evolutionary feed-

backs, trait evolvability and mechanistic constraints

[6��,42,43,44�,45–49,50�,51]. In particular, we need to

understand the emergence of novel traits that are pre-

requisites for such seemingly demanding interaction,

and the mechanistic building blocks of cooperative

behaviour, taking into account the effect of potential

conflict of fitness interests on the evolution of involved

proximate mechanisms.

Routes to the evolution of mechanisms of
cooperative behaviour
Obviously, the evolution of sociality from solitary ances-

try and the evolution of cooperative from non-cooperative

behaviours require the emergence of novel social traits,

such as individual or ‘class’ recognition and social memo-

ry. High degrees of pleiotropy would naturally limit the

emergence of novel traits, but recent analyses quantifying

the degree of pleiotropy across different organisms

revealed that it is much more restricted than previously

thought, and that genotype-phenotype maps are highly

modular [52].

Two main evolutionary routes to novelty in social traits

have been evaluated in cooperative animal societies,

hitherto best exemplified in social insects. (1) Evolving

new social behaviours from ancestral gene networks that

gain increased regulatory flexibility and are co-opted for a

new function; (2) emergence of genetic novelty, which is

particularly required for the evolution of the most ad-

vanced forms of eusociality [53–55]. The first route builds

on the existence of distinct, ancestral molecular modules

regulating the physiology and behaviour of solitary species,
Current Opinion in Behavioral Sciences 2015, 6:132–138
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which have undergone modification during the transition

to (eu)sociality. These distinct modules are combined to

produce social pathways orchestrating all steps of an ap-

propriate behavioural expression from perception of a

stimulus to the final motor action. Regulatory processes

are connected strongly within, but only weakly between

modules, allowing largely independent module evolution

and functional flexibility [54]. An example for co-opting of

conserved elements in this context is the gene network

around the juvenile hormone (JH) and vitellogenin (Vg). In

solitary insects and reproductive queens, JH upregulates

Vg and stimulates oocyte maturation, while in workers of

eusocial bees, ants and termites, the two genes inhibit each

other [56].

Evolution of novel genes, the second major route to

evolutionary novelty, is assumed to be associated with

later stages in the transition from solitary to (eu)social life

style [10��]. It can be identified with help of ‘taxonomi-

cally restricted genes’ (TGRs). In the honey bee genome,

700 such TGRs were detected, which exist solely either in

the honey bee, in hymenoptera, or in insects [55]. These

genes were found to underlie disproportionately often

novel phenotypes involving worker traits, and to undergo

rapid changes of coding sequence [57]. Remarkably,

independent evolutionary transitions from solitary to

(eu)social life styles differ in their particular genomic

changes, but the different transitions have similar general
features [58].

Here we aim to evaluate whether the same two general

routes to evolve cooperative behaviours, namely co-opt-

ing of conserved elements and de novo evolution, may

likewise apply in vertebrates. While molecular mecha-

nisms generating genetic novelty are not yet well ex-

plored in vertebrates, several conserved signalling

systems are known to be involved in the behavioural

and physiological building blocks of vertebrate coopera-

tion. Here we identify three building blocks and discuss

their underlying regulatory mechanisms, and the insights

thus far achieved regarding their evolution.

Proximate building blocks of cooperation
The first building block of cooperation is a stable social

organization that remains functional even if conflicts of

interest occur among individuals. Unnecessary friction

or repeated negotiations of dominance relationships

and task commitment can be avoided if individuals

express appropriate social behaviours dependent on

their (relative) social state and the particular context

[8��]. Developmental processes and current social sti-

muli underlie the expression of appropriate social be-

haviour. A key developmental mechanism in this

context is the early acquisition of social competence,

that is the ability of individuals to flexibly use social

information in order to optimize their social perfor-

mance [8��]. The early programming of the vertebrate
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stress axis [hypothalamic-pituitary-adrenal (HPA) or -

interrenal (HPI) axis] seems central for determining

social performance later in life: in fish, mice and rats,

social enrichment results in both (i) a lower stress

responsiveness, as revealed by the expression of stress

axis genes in the brain and by behavioural test results,

and (ii) a better performance during social challenges

[59,60,61�]. In the cooperatively breeding cichlid Neo-
lamprologus pulcher, for instance, these behavioural

effects enhance the functionality of social groups by

increasing the tolerance of subordinates and reducing

the duration of contests [62,63]. Furthermore, in

rodents the development of social competence is ac-

companied by higher concentrations of the neural plas-

ticity marker BDNF in the brain [64].

Immediate social experience may also trigger the physio-

logical state of an animal in order to prepare it to perform

appropriate social behaviour. For example, watching a

fight between conspecifics changes the physiological state

of a bystander in the cichlid Oreochromis mossambicus [65]:

the bystander experiences a surge of androgens, probably

thereby getting prepared for an aggressive encounter in

the near future. Hormonal systems are known to generally

affect sociability, which is a precondition for group life.

The oxytocin-like peptides including oxytocin (mam-

mals), mesotocin (birds, reptiles and amphibians) and

isotocin (fish), and their receptors, which form the verte-

brate nonapeptide signalling system together with argi-

nine vasotocin/vasopressin, have often been highlighted

as the promotor of social behaviour. However, due to the

modular nature of the nonapeptide system and its spe-

cies-specific evolution [66�], general predictions of the

direction of effects can often not be made, even within a

vertebrates class. For instance, while in humans, non-

human mammals and goldfish oxytocin/isotocin favours

social approach [66�], in the cooperatively breeding cich-

lid N. pulcher it has exactly the opposite effect [67], while

no effect was observed on approach behaviour in zebra

finches [66�]. In general, long-term social relationships

such as pair or family bonds may help to reduce conflict.

However, the physiological regulation of pair bonding

involving the vasopressin or the oxytocin system seems to

strongly diverge between different vertebrate taxa [66�],
revealing that taxon matters when studying mechanisms

of social behaviour [68]. In fact, to date there is no clear

evidence that nonapeptides are at all causally involved in

the process of bonding.

The second building block of cooperation between indi-

viduals that are subject to a conflict of fitness interests is

the exertion of social control to prevent cheating, and to

manifest the division of tasks between dominants and

subordinates. Here, differences in social rank play an

important role, which are often associated with differen-

tial sex steroid profiles, in particular variation in androgen

and progesterone levels (cichlids: [39,69] mole rats: [70]).
www.sciencedirect.com
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High rank often needs to be persistently reinforced,

which typically occurs by dominants’ aggression. Also

here, the functionality of the underlying hormonal regu-

lation may diverge between species. For instance, activa-

tion of the AVT system has been assumed to favour

aggressive tendencies in dominants of mouthbrooding

cichlids [71], but in the cooperatively breeding cichlid

N. pulcher no association between aggression and AVT

could be identified [72]. Furthermore, comparative evi-

dence suggests that an induction of increased stress levels

in subordinates by repeated aggression of dominants is

unlikely to act as general control mechanism in coopera-

tive breeders, as dominants often have higher corticoid

levels than subordinates [73]. However, during specific

critical circumstances, such as during a dominant female’s

pregnancy (meercats [74]), or because of particularly

harsh environmental conditions (superb starlings [75]),

dominant aggression can effectively restrain subordinate

reproduction through an activation of the HPA axis, with

downstream effects on gonadotropin-releasing hormone

in the hypothalamus and resultant blocking of ovulation.

A similar pathway was proposed to be involved in species

in which dominants can achieve complete reproductive

suppression of subordinates, such as in eusocial naked

mole rats and Damaraland mole rats [76].

Alternatively to active control by dominant aggression,

subordinates can pre-emptively provide honest signals of

submission or of their helping propensity [77], or of low

reproductive intent [39]. For example, the circulating

levels of androgens are lower in male helpers of N. pulcher
showing high levels of submission towards breeder males,

thereby conveying an honest signal of their low repro-

ductive potential [39]. Subordinates can exhibit self-im-

posed reproductive suppression in systems where

dominants would inevitably kill subordinates’ offspring.

In common marmosets, the pituitary gonadotropin levels

dropped rapidly and ovulation stopped when individuals

were introduced into groups where they had to obtain a

subordinate role [78].

Mechanisms of the third building block of cooperation,

the actual propensity to behave cooperatively, have been

predominantly studied in vertebrates in the context of

reciprocity or when commodities are exchanged, with a

focus on the role of the nonapeptide system. Like for the

effect of nonapeptides on social approach, general trends

appear to be absent. Activation of the oxytocin (humans:

[79]) and the AVT/AVP system (humans: [80]) were

found to enhance cooperative tendencies as often as they

were reported to inhibit cooperation (OT: humans [81];

AVT: cleaner wrasse [82]) or to exert effects strongly

contingent on social context (OT: humans [80,83]). Ex-

perimental work on Norway rats suggests that the effects

of oxytocin on reciprocal cooperation may be mediated

mainly by its role in modulating social anxiety rather than

a specific effect on the generation of trust (M Dietz, M
www.sciencedirect.com 
Taborsky, unpublished data). A general anxiolytic effect

of oxytocin seems to affect cooperation propensity also in

capuchin monkeys [84].

Notably, the physiological mechanisms mediating help-

ing behaviour in cooperative breeders are hitherto not

well understood. Thus far the role of two hormones has

been studied more closely in meerkats, cortisol and

prolactin. Their effects seem to depend on the particular

care behaviour considered. Cortisol but not prolactin was

positively associated with alloparental pup-feeding [85].

In contrast higher prolactin but lower cortisol levels

immediately advanced babysitting in male helpers of this

species [86].

Conclusions
When compiling existing information about the mecha-

nisms underlying cooperative behaviour in vertebrates

and its essential building blocks embedded in social

interactions, at first glance the picture seems blurred. It

becomes quickly clear, however, that the same regulatory

systems often have divergent functions and effects in

different taxa. Despite the obvious conservation of neural

and neuroendocrine components among very divergent

vertebrate lineages [7��,66�], the functions of the involved

regulatory systems seem to vary substantially, suggesting

independence by modular evolution. Two candidates

stand out as being involved apparently in all three build-

ing blocks of cooperation, the vertebrate stress axis and

the nonapeptide system. They act in very different ways,

though, often showing directly opposing effects in differ-

ent species. To some extent this resembles the regulatory

shifts in ‘old’ genes to new functions in the social insects

[10��]. The enormous variety of cooperative behaviours

shown in vertebrates and the flexibility of their context-

dependent expression are unlikely to be governed merely

by two hormonal systems, however. We are only just

beginning to understand the regulatory and signalling

networks responsible for the expression of vertebrate

cooperation.
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