
evo_656 evo2007.cls (1994/07/13 v1.2u Standard LaTeX class) 2-24-2009 :711

EVO evo_656 Dispatch: 2-24-2009 CE: VBA

Journal MSP No. No. of pages: 10 PE: Sonia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

BRIEF COMMUNICATION

doi:10.1111/j.1558-5646.2009.00656.x

ASSORTMENT AND THE EVOLUTION OF
GENERALIZED RECIPROCITY
Daniel J. Rankin1,2,3 and Michael Taborsky1,4

1Division of Behavioural Ecology, Institute of Zoology, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen,

Switzerland
2E-mail: d.rankin@bioc.uzh.ch
4E-mail: michael.taborsky@esh.unibe.ch

Received April 20, 2008

Accepted January 10, 2009

Reciprocity is often invoked to explain cooperation. Reciprocity is cognitively demanding and both direct and indirect reciprocity

require that individuals store information about the propensity of their partners to cooperate. By contrast, generalized reciprocity,

wherein individuals help on the condition that they received help previously, only relies on whether an individual received help in

a previous encounter. Such anonymous information makes generalized reciprocity hard to evolve in a well-mixed population, as

the strategy will lose out to pure defectors. Here we analyze a model for the evolution of generalized reciprocity, incorporating

assortment of encounters, to investigate the conditions under which it will evolve. We show that, in a well-mixed population,

generalized reciprocity cannot evolve. However, incorporating assortment of encounters can favor the evolution of generalized

reciprocity in which both indiscriminate cooperation and defection are both unstable. We show that generalized reciprocity can

evolve under both the prisoner’s dilemma and the snowdrift game.

KEY WORDS: Cooperation, direct reciprocity, population viscosity, relatedness, spatial structure.

Reciprocity has long been invoked as a mechanism to explain the

evolution of cooperation between unrelated individuals (Trivers

1971). Direct reciprocity, in the form of tit-for-tat, can lead to the

evolution of cooperative behaviors when individuals return one

favor with another (Axelrod and Hamilton 1981). Reciprocity can

also come in the form of indirect reciprocity (Nowak and Sig-

mund 1998b, 2005), in which individuals cooperate with other

individuals that they have previously seen engaging in cooper-

ation with others (Nowak and Sigmund 2005). Both direct and

particularly indirect reciprocity require highly advanced cognitive

abilities (Milinski and Wedekind 1998; Dugatkin 2002; Stevens

et al. 2005), in which individuals must recognize a cooperating

individual, and use this information to act accordingly. As such, it

has been argued that direct and indirect reciprocity will be limited

3Current address: Department of Biochemistry, University of Zurich,

Building Y27, Winterthurstrasse 190, CH-8057 Zurich, Switzerland.

to animals with more advanced cognitive powers (Pfeiffer et al.

2005; Stevens et al. 2005).

By contrast, generalized reciprocity (Hamilton and Taborsky

2005; Pfeiffer et al. 2005; Rutte and Taborsky 2007), in which

an individual cooperates if it has experienced cooperation, only

relies on information from the previous interaction, regardless

of the identity of the partner, and therefore hardly requires so-

phisticated cognitive abilities. Also known as “upstream indirect

reciprocity” (Nowak and Roch 2007), generalized reciprocity is

much less likely to evolve in a well-mixed population than other

forms of reciprocity that involve the use of more complicated in-

formation (such as reputation, in the case of indirect reciprocity).

This has been illustrated by previous models, which suggested that

generalized reciprocity could only evolve either in small groups

(Pfeiffer et al. 2005), in combination with group leaving strategies

(Hamilton and Taborsky 2005), or on a one-dimensional lattice in

connection with direct reciprocity (Nowak and Roch 2007).

1
C© 2009 The Author(s).
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BRIEF COMMUNICATION

Reciprocity can evolve by increasing the probability that a

helpful behavior will be returned at some point in the future.

As such, it is obvious that generalized reciprocity will not incur

any feedback as a result of the behavior in a large, well-mixed

population. However, Pfeiffer et al. (2005) showed that general-

ized reciprocity could only evolve in small groups. It has also

been shown that simple one-dimensional spatial structure, with

interactions only occurring between two neighboring individuals,

could allow generalized reciprocity to invade (Nowak and Roch

2007). In their model, Nowak and Roch (2007) described a situ-

ation in which a focal individual would return an act of help to a

neighbor to the left or right with a probability of 1
2 , respectively.

This situation meant that a cooperating individual would have an

act of helping reciprocated with a 50% probability.

In well-mixed populations, the relatedness between interact-

ing individuals approaches zero (West et al. 2002), whereas when

there is some form of nonrandom assortment, relatedness between

interacting individuals becomes positive. Spatial structure and re-

latedness between interacting individuals have both been shown

to promote the evolution of cooperation, as well as forms of reci-

procity, by increasing interactions between genetically similar in-

dividuals (Queller 1985; Axelrod et al. 2004; Santos et al. 2006).

If interactions between individuals are local and competition is

global, cooperative strategies can invade (West et al. 2001; Griffin

et al. 2004; Pfeiffer et al. 2005). Assortment is likely to favor the

evolution of generalized reciprocators. Generalized reciprocators

who have experienced cooperation in the past will reciprocate by

indiscriminately cooperating with the next individual they meet.

When there is assortment between similar strategies, it is more

likely than random that ones partner will be another generalized

reciprocator, rather than an indiscriminate defector.

Here we investigate whether assortment between strategies

can favor the evolution of generalized reciprocity. Our model ex-

amines two classic payoff-matrices, the prisoner’s dilemma and

the snowdrift game (Doebeli and Hauert 2005). We incorporate

the degree of assortment between strategies into our model. This

allows us to look at a continuum of different degrees of assortment,

ranging from a completely mixed population to full assortment

between strategies. We analyze the model to investigate the condi-

tions under which generalized reciprocity will invade, and be im-

mune to the invasion of, unconditional cooperators and defectors.

Model and Results
GAME STRUCTURE AND PAYOFFS

We start with an infinite population composed of individuals with

three strategies: pure cooperators (which always invest in coop-

eration), pure defectors (which never invest in cooperation), and

generalized reciprocators (which either help if they have been

helped in the previous round, or do not help if they did not re-

ceive help in the previous round). We denote the frequency of

cooperators as x, defectors as y, and generalized reciprocators

as z. Generalized reciprocators cooperate on the condition that

they have received cooperation in their last encounter, and will

defect (not cooperate) conditionally on experiencing defection in

their previous encounter. Thus, at any given time, a generalized

reciprocator can be either in a cooperative (helping) or a defect-

ing (nonhelping) state. We use a simple method from Eshel and

Cavalli-Sforza (1982) to incorporate assortment among strategies

into our model. This degree of assortment is given by the param-

eter v and, when positive, can be described as the probability of

a given individual to interact with one’s own strategy. As such,

the probability K that a given strategy interacts with it’s own type

(of frequency k) can be described as K = v + k(1 − v), and the

probability, K’, that a strategy interacts with a given other strategy

(of frequency k’) is K’ = k’(1 − v). Interactions are random when

v = 0. When v > 0, an individual interacts with its own type more

often than it would if interactions were random, and when v <

0 an individual is more likely to interact with strategies different

to it’s own than it would if interactions were completely random.

Here we only consider the (most plausible) case where v ≥ 0.

It should be noted that our way of calculating assortment is the

same as the regression definition of relatedness (Hamilton 1970;

Grafen 1985; Frank 1998).

We assume that, in each round, every player interacts with

another, random player. As such, generalized reciprocators in our

model represent a distinctive strategy from direct reciprocators, as

they do not interact subsequently with the same individuals, and

cooperation is based purely on the actor’s prior experience, and

not on one’s experience with, or the reputation of, one’s partner.

We denote the frequency of reciprocators in the population that

are in a helping state (i.e., they have experienced cooperation in

the previous round) in round n as zC(n), and the frequency of

reciprocators in the population that are in a state of defection (i.e.,

they experienced defection in the previous round) in round n as

zD(n) (where zC(n) + zD(n) = z). In the first round, generalized

reciprocators will cooperate with a probability a (and therefore

defect with a probability 1−a). The frequency of reciprocators in

the population that are in a cooperating state in round n is (see

Appendix 1):

zC (n) = z(x − (x − a(1 − z))(v + z(1 − v))n)

1 − z
, (1)

and the frequency of reciprocators in the population which are in

a defecting state in round n is zD(n) = z − zC(n). In this analysis,

we consider a to be a fixed parameter that does not evolve. We

assume an infinite population size and track only the frequency

of the three respective strategies in the population.

2 EVOLUTION 2009
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BRIEF COMMUNICATION

From the above frequencies, we can calculate the payoff for

each strategy. We assume that, in each round, individuals behave

as both an actor (and may potentially give help by cooperating,

depending on which strategy they play) and as a recipient. As

we assume a large population size, no two individuals interact

together more than once in their lifetime. Thus, each partner is

a stranger. Following a similar approach to Nowak & Sigmund

(1998a,b), we assume that each generation lasts for a certain num-

ber of rounds, and that, after each round, the game will continue to

another round with a probability w (Axelrod and Hamilton 1981).

The expected number of rounds in a game is given as 1/(1 − w).

The total payoff for strategy i is Pi,total = ∑∞
n=0 wn Pi (n). Full

details of how the total payoffs to each strategy are derived are

given in Appendix 2. As the proportion of generalized reciproca-

tors in a cooperative or defective state changes after each round,

the separation between evolutionary and behavioral time-scales

depends on w. We have, however, checked the results of our

model for the case where the number generalized reciprocators

in a cooperative or defective state has reached the equilibrium

proportion ẑC ≡ zC (∞) and ẑD(∞) ≡ zD(∞), respectively. This

Figure 1. Replicator dynamics of invasion of generalized reciprocity under a prisoner’s dilemma payoff matrix (R = b − c + d, T = b, S =
−c, P = 0). (A) Invasion of generalized reciprocators (GR) into a population of unconditional cooperators (AllC) where v = 0.1; (B) invasion

of AllC into a population of GR when v = 0.75; (C) invasion of GR into a population of unconditional defectors (AllD) when v = 0.75; (D)

invasion of AllD into a population of GR when v = 0.25. The proportion of generalized reciprocators at the end of each generation (i.e.,

which is at round n = 1/(1 − w), on average), which are in a state of cooperation, is given by the dotted-dashed line. Other parameters

are b = 2, c = 1, d = −0.1, a = 0.5, and w = 0.5. Starting values for the simulation were (A) x = 0.99, y = 0, z = 0.01; (B) x = 0.01, y = 0,

z = 0.99; (C) x = 0, y = 0.99, z = 0.01; and (D) x = 0, y = 0.01, z = 0.99.

assumes that the behavioral state of generalized reciprocators (i.e.,

whether they are in a cooperative or defective state) equilibrates

very quickly, relative to the evolutionary dynamics. Under this

assumption, we were able to derive exactly identical results to the

model with a random number of rounds, supporting the robustness

of our approach (see Appendix 3 for details).

The dynamics of strategy i with frequency qi(t), at time

t, changes according to the replicator equation qi (t + 1) =
qi (t)Pi,total

P̄total
, where P̄total is the average payoff in the population, and

is equal to P̄total = qx (t)Px,total + qy(t)Py,total + qz(t)Pz,total .

Examples of these dynamics are given in Figure 1. We wish

to find the conditions under which generalized reciprocity is an

evolutionary stable strategy (ESS), and immune to invasion from

other strategies. This occurs if generalized reciprocators are both

an ESS with respect to pure cooperators (i.e., Pz,total > Px,total

when z = 1 y = 0, x→0 and Pz,total > Px,total when x = 1, y =
0, z→0) and an ESS with respect to pure defectors (i.e., when

Pz,total > Py,total when x = 0, y = 1, z→0 and Pz,total > Py,total

when z = 0, x = 0, y→0). Full details of how we calculate the

ESS are given in Appendix 2.

EVOLUTION 2009 3
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BRIEF COMMUNICATION

Table 1. Invasion criteria for generalized reciprocity (GR) with respect to pure defectors (AllD) and pure cooperators (AllC) for two payoff

matrices.

Prisoner’s dilemma matrix Snowdrift matrix
(T=b, S=−c, P=0, R=b−c+d) (T=b, S=b−c, P=0, R=b−c/2)

GR can invade population of AllD
c − bv

1 − vw
− adv

1 − v2w
< 0

2(b − c + bv)

1 − vw
− av(2b − c)

1 − v2w
> 0

GR are immune to invasion from AllD bv>c−da 2b(1−a+v)−c(2−a)>0

GR can invade population of AllC c+v2 w(ad+v (b+d)−c)−d>0
c(2 − a − v)

2(1 − a)
> b

GR are immune to invasion from AllC c−d(a+v)>bv
c(1 − av − v2(2 − v − a)w)

2(1 − a)v(1 − vw)
> b

GR ESS and immune to invasion overall c−da<bv<c−d(a+v)
c(2 − a)

2(1 − a + v)
< b <

c(2 − a − v)

2(1 − a)

ASSORTMENT IS NEEDED FOR BOTH EVOLUTIONARY

AND CONVERGENT STABILITY

From these invasion criteria (see Appendix 2, equations A5–A8),

we can investigate whether generalized reciprocity will be an ESS

when there is no assortment among strategies and the population is

completely mixed. In this case, v = 0 and all strategies will inter-

act equally. Generalized reciprocators will be able to invade, and

be immune to invasion from pure defectors (derived from equa-

tions A5–A6 in Appendix 2) if S > P, and either T < R or both

T ≥ R and a < P−S
P−S+R−T . On the other hand, generalized recip-

rocators will be able to invade, and be immune to invasion from,

pure cooperators (derived from equations A7–A8 in Appendix 2)

if T > R and either P ≥ S or both S > P and a > P−S
P−S+R−T .

Therefore, it is not possible that generalized reciprocity can be

evolutionarily stable against both pure defectors and pure cooper-

ator if there is no assortment (i.e., when v = 0). This means that,

under any payoff structure, generalized reciprocity cannot invade,

and remain stable, in a completely mixed population.

SPECIFIC PAYOFF MATRICES

We now can investigate the evolution of generalized reciprocity

under specific payoff matrices. Full equations, for both a pris-

oner’s dilemma payoff matrix (T = b, S = −c, P = 0, and R =
b − c + d, which satisfies the conditions where T > R > P >

S) and a snowdrift payoff matrix (T = b, S = b − c, P = 0, and

R = b − c/2, which satisfies the conditions T > R > P > S) are

given in Table 1. Here b represents the benefits conferred upon

a social partner by cooperating, and c is the cost of cooperating.

The parameter d, in the prisoner’s dilemma, determines whether

the payoff matrix is additive when d = 0 or nonadditive when

d �= 0 (Fletcher and Zwick 2006). If d > 0, we have a positive

synergy of mutual action (such as in which the benefits of mutual

cooperation are more than acting on one’s own: Queller 1985)

and if d < 0 we have a negative synergy of mutual action (such

as diminishing returns from mutual cooperation).

If d = 0 or d > 0, there is no condition under which general-

ized reciprocity is evolutionarily stable with respect to both pure

cooperation and pure defection under a prisoner’s dilemma pay-

off matrix. When there is negative synergy in mutual cooperation

(i.e., d < 0), generalized reciprocity is an ESS (i.e., it is immune

to invasion) and cannot be invaded, against both pure cooperators

and defectors if

c − da < bv < c − d(a + v).

This means that v > 0, 0 < a < 1, and d < 0 are all required

for generalized reciprocity to both invade a population of pure

cooperators or defectors and be immune to invasion from pure

cooperators or defectors. If a = 1, then generalized reciprocators

cooperate on the first round, and behave the same when invading a

population of cooperators, or when being invaded by a population

of cooperators. Similarly, if a = 0, then generalized reciprocators

will behave identically to defectors when invading a population

of defectors. Thus, if a = 1 or a = 0, then generalized reciprocity

will be identical to, and hence neutrally stable with respect to,

pure cooperators or pure defectors, respectively. Figure 2 plots

the conditions for generalized reciprocity to be an ESS for either

weak negative synergy (d = −0.25, Fig. 2A) or stronger negative

synergy (d = −1, Fig. 2B).

Generalized reciprocity will be a be an ESS, and be immune

to invasion from either pure defectors of pure cooperators, under

a snowdrift payoff if

c(2 − a)

2(1 − a + v)
< b <

c(2 − a − v)

2(1 − a)
,

which, as for the prisoner’s dilemma, requires that v > 0 and 0 <

a < 1. The criteria for generalized reciprocity to be evolutionarily

stable under a snowdrift game are shown in Figure 3. From these

inequalities we can see that, when a (the probability of cooperating

in the first round) is low (a = 0.2, Fig. 3A), the conditions for

4 EVOLUTION 2009
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BRIEF COMMUNICATION

Figure 2. Contour plot showing the regions where generalized reciprocators are evolutionarily stable, and when they can be invaded

by pure cooperators or pure defectors, under a prisoner’s dilemma payoff matrix (R = b − c + d, T = b, S = −c, P = 0). Parameters used

are c = 1 and a = 0.5. In (A) d = −0.25 and (B) d = −1.

generalized reciprocity to be an ESS are more stringent than when

a is high (a = 0.8, Fig. 3B). In other words, cooperating in the

first round gives generalized reciprocators a larger benefit over

both unconditional cooperators and defectors.

Discussion
Our results confirm that generalized reciprocity cannot evolve

in the absence of population assortment (Figs. 2 and 3, when

v = 0). This is because, in a well-mixed population, generalized

reciprocity will indiscriminately confer benefits on strangers who

will not necessarily return an act of cooperation. When we include

some degree of assortment, we find that generalized reciprocity

can invade and can be immune to invasion from pure defectors

(Fig. 1).

Figure 3. Contour plot showing the regions where generalized reciprocators are evolutionarily stable, and when they can be invaded

by pure cooperators or pure defectors, under a snowdrift payoff matrix (R = b − c/2, T = b, S = b−c, P = 0). Parameters used are c = 1.

In (A) a = 0.2 and (B) a = 0.8.

Our results show that it is possible for generalized reciprocity

to be a true ESS in both a snowdrift (Fig. 3) and prisoners dilemma

(Figs. 1 and 2) game. The fact that generalized reciprocity can

evolve under both payoff matrices is significant, as comparisons

have been made between them in terms of the level of cooperation

(Kümmerli et al. 2007). Under a prisoner’s dilemma matrix, how-

ever, generalized reciprocity is only evolutionarily stable if there

is negative synergy in the prisoner’s dilemma matrix (i.e., when

d < 0). In this case, generalized reciprocity can be an ESS as long

as there is, importantly, a critical degree of assortment between

strategies (see Fig. 2). In the absence of negative synergy (i.e.,

d ≥ 0), generalized reciprocity is not a true ESS as the conditions

under which it will invade a population of defectors simulta-

neously make it susceptible to invasion by pure cooperators, and

vice versa. Negative synergy comes about in a prisoner’s dilemma

EVOLUTION 2009 5
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BRIEF COMMUNICATION

when the overall gain from mutual cooperation is less than the

overall investment of both partners (i.e., there are diminishing

returns from mutual cooperation). For example, collaborating on

a scientific paper with a co-author (as opposed to working as

the sole author) reduces the workload significantly, but there is

a baseline level of investment by both partners in terms of dis-

cussions and proofreading. In the case of scientific collaboration,

there is a clear reward from collaborating compared to sole au-

thorship, but negative synergy arises because collaborating does

not necessarily correspond to halving the time on a co-authored

paper compared to writing the whole thing alone. In their classic

work on direct reciprocity, Axelrod and Hamilton (1981) assumed

negative synergy in their prisoner’s dilemma matrix (where R =
3, T = 5, S = 0, and P = 1, which corresponds to each indi-

vidual has a base-line fitness of 1 and the payoffs being b = 4,

c = 1, and d = −1: Axelrod and Hamilton 1981; Axelrod 1984;

Fletcher and Zwick 2006). Diminishing returns in payoffs from

cooperation are widespread in nature, as shown for instance in

group vigilance (Roberts 1996) or group size effects on group

productivity in social insects and cooperatively breeding verte-

brates (Michener 1964; Stacey and Koenig 1990; Balshine et al.

2001; Foster 2004).

The benefits of generalized reciprocity come from receiving

a benefit as a result of a feedback from the cost paid by invest-

ing in cooperation. This comes from interacting with one’s own

strategy with a higher probability than would occur if interactions

were completely random. Such assortment can come about in var-

ious ways. The most obvious is population viscosity and spatial

structure in which strategies are more likely to be assorted with

one another (Hamilton 1971; Nowak and May 1992; Le Galliard

et al. 2003; Taylor et al. 2007; Lion and van Baalen 2008). In this

case, assortment will depend on the demography of the species

(which in turn will be affected by the average outcome of social

interactions, through the affect on births, deaths, and dispersal).

For example, limited dispersal increases the chance that related

individuals are aggregated, and hence that they interact with each

other. However, limited dispersal also increases competition be-

tween relatives, and so the benefit of viscosity can cancel out

(Taylor 1992). Although there has been some debate as to the

effect of population viscosity on the evolution of cooperative be-

haviors, if competition is global, but interactions are more local (as

is the case when v > 0 in our model), then cooperative behaviors

such as reciprocity will be favored (West et al. 2002). Although

spatial structure is ubiquitous in nature, global competition is not

always the norm, and competition between relatives can be com-

mon (West et al. 2001, 2002). Local interactions, in combination

with global competition, can come about if helping occurs be-

fore dispersal, meaning that strategies will initially be assorted

(and will often share common descent; Hamilton 1964), but the

level of assortment will later be reduced due to mixing through

dispersal (West et al. 2002). Assortment in our model can come

about through simple assortment between nonrelatives, although

kin structure is likely to be a common cause of this assortment. In

fact, our parameter for nonrandom assortment v is equivalent to

relatedness r (Hamilton 1964), and as we assume that our strate-

gies have a genetic basis, any form of positive assortment will

result in a positive value of r. The level of assortment may vary

between strategies—for example, cooperators may be less likely

to disperse than noncooperators and this would result in different

levels of assortment between strategies. However, as long as gen-

eralized reciprocators were more assorted than other strategies,

we expect them to gain an advantage by directing cooperation

towards other reciprocators.

Another way in which assortment between reciprocators can

arise is by discriminately favoring reciprocators over other in-

dividuals (e.g., Bernhard et al. 2006). This can occur through

green-beard mechanisms (Hamilton 1964; Dawkins 1976; Keller

and Ross 1998; Jansen and van Baalen 2006), in which the recip-

rocating strategy is marked in some way, making it recognizable

to other reciprocators. Such recognition results in individuals with

the green beard being associated with one another, and thus facil-

itates assortment (Jansen and van Baalen 2006). However, such

systems have been shown to be rather unstable, and susceptible

to individuals displaying “recognition traits” without cooperating

(Gardner and West 2007; Rousset and Roze 2007).

Previous models of generalized reciprocity have all incorpo-

rated some form of assortment between strategies. For example,

Pfeiffer et al. (2005) showed that generalized reciprocity was only

evolutionarily stable in small groups. Interacting in small groups

increases the probability that two individuals will interact more

than once, and the probability that two generalized reciproca-

tors will meet again, when rare, will therefore be higher. This

will then increase the benefit to generalized reciprocators. In a

model incorporating contingent movement (i.e., cooperative indi-

viduals can leave a group if they experience defection), Hamilton

and Taborsky (2005) found that generalized reciprocators that de-

fected or left a group after experiencing defection were favored.

If cooperative individuals leave a group to join a new group as

a consequence of defection, groups composed of mostly gener-

alized reciprocators will eventually form as a result. This would

create assortment between strategies, and thus, as the current

model suggests, increase the feedback gained from cooperating

(Sachs et al. 2004). Nowak and Roch (2007) modeled general-

ized reciprocity on a one-dimensional lattice in which individuals

were constrained to only interact with their two closest neigh-

bors, creating very strong assortment between reciprocators and

increasing the chance that a helpful act would be reciprocated.

An additional constraint of their model was that it did not allow

for acts of defection to be passed on and reciprocated, so only co-

operative acts could be passed on and reciprocated. In contrast to

6 EVOLUTION 2009
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this, in our model generalized reciprocity is capable of passing on

both cooperative and noncooperative acts to social partners. Our

model builds on these results by showing that in the absence of any

assortment between strategies, regardless of the payoff structure,

it is impossible for generalized reciprocity to evolve because it is

prone to invasion by either indiscriminate cooperators or defec-

tors. We have explicitly shown that when there is some assortment

between strategies, generalized reciprocity can evolve, which has

only been implied by results obtained under more specific condi-

tions in previous models (Hamilton and Taborsky 2005; Pfeiffer

et al. 2005; Nowak and Roch 2007).

Arbitrary cues can also be used to stabilize cooperation (e.g.,

Hammond and Axelrod 2006), and could work with generalized

reciprocity. However, we wish to emphasize that the importance

of generalized reciprocity will be greatest under limited infor-

mation. It has recently been shown that generalized reciprocity

can be maintained if it exists in a population containing direct

reciprocators, which play “tit-for-tat” (Nowak and Roch 2007).

However, this model (Nowak and Roch 2007) ignores the po-

tentially large cognitive costs of memory involved in direct reci-

procity (Milinski and Wedekind 1998; Stevens et al. 2005). These

costs arise because direct reciprocators must not only remem-

ber the outcome of a larger number of previous encounters, but

also remember which individuals those encounters were with.

Although direct reciprocity will invariably be a more favored

strategy due to the ability to remember and reciprocate a co-

operative act to the original donor (Rutte and Taborsky 2008),

costs involved in memory and recognition may be strong enough

to hinder the evolution of direct reciprocity (F. Eggimann, un-

publ. MSc. thesis). If costly information prevents the evolution

of cognitively complex strategies, such as direct or indirect reci-

procity, the only way that generalized reciprocators will be able

to gain a benefit from reciprocating (and therefore evolve) is

through disproportionately interacting with other generalized re-

ciprocators. As our model shows, this can come about through

assortment.

According to the “hierarchical information hypothesis”

(Rutte and Taborsky 2008), generalized reciprocity should apply

when no specific information about the propensity for cooperation

is available for a social partner. This limitation may have different

origins, among them being a lack of previous individual expe-

rience and a constraint in cognitive abilities or memory. Under

complete spatial assortment, generalized reciprocity will become

indistinguishable from direct reciprocity: in groups of two indi-

viduals, for instance, generalized reciprocity will behave the same

way as tit-for-tat (Pfeiffer et al. 2005). As generalized reciprocity

requires less information than direct reciprocity, it may be more

common, as it will be applicable to a greater variety of situations

and a wider range of organisms. This maybe especially important

due to the fact that memory and individual learning mechanisms

may be associated with fitness costs (Mery and Kawecki 2002;

Rouder et al. 2008).

Generalized reciprocity has been repeatedly shown in studies

involving humans (Berkowitz and Daniels 1964; Isen 1987), in

which it is often referred to as gratitude (e.g., Bartlett and DeSteno

2006). Generalized reciprocity has often been neglected in empir-

ical studies (Rutte and Taborsky 2007, 2008). Studies that set out

to test for direct reciprocity between individuals usually fail to

test for generalized reciprocity. However, generalized reciprocity

has been found to work in Norway Rats (Rutte and Taborsky

2007) and we think it is safe to assume that it may be much more

common than previously thought (Trivers 1971), and therefore re-

quires future experimental scrutiny. Given that little information

from previous social encounters and only very limited cognitive

ability are a needed for generalized reciprocity to work, our re-

sults suggest that it could be a common phenomenon. As such,

generalized reciprocity is reminiscent of winner and loser effects,

which are also based on anonymous information from previous

encounters and are extremely widespread in animals (Hsu et al.

2006; Rutte et al. 2006).
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Appendix 1
DERIVATION OF STATE OF GENERALIZED

RECIPROCATORS ZC(n)

We first calculate the frequency of reciprocators in each round

that are in a cooperating state (zC(n)) and the frequency of those

that are in a defecting state (zD(n)). If an individual reciprocator

has experienced cooperation in the previous round, it will become

a cooperator in the current round, whereas if it has experienced

defection in the previous round it will become a defector in the

current round. The probability that a reciprocator begins the game

by cooperating in the first round is given by a. Thus, the frequen-

cies of cooperating reciprocators and defecting reciprocators in

the first round are zC(0) = za and zD(0) = z (1 − a), respectively.

We can now look at the proportion of reciprocators that will ei-

ther be in a state of cooperation or defection in the nth round.

We now introduce v, the degree of assortment between strategies.
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The probability that a given individual will interact with it’s own

strategy is v + k(1 − v) (where k is the frequency of its own

strategy) and the probability that it will interact with a given other

strategy is k’(1 − v) (where k′ is the frequency of the strategy in

question). The proportion of reciprocators that cooperate in round

n + 1 is:

zC (n + 1) = zC (n)zC (n)(v + z(1 − v))/z

+zC (n)zD(n)(v + z(1 − v))/z

+zC (n)x(1 − v) + zD(n)x(1 − v) (A1)

This equation deals with the overall proportion of generalized

reciprocators that are in a state of cooperation in the population,

and so we divide the first two terms on the right-hand side by z,

as zC(n) + zD(n) = z. The proportion of reciprocators that defect

in round n + 1 is zD(n + 1) = z − zC(n + 1).

By expanding and simplifying equation A1 (and, as x + y +
z = 1, we can write y = 1 − x − z), we obtain:

zC (n + 1) = zC (n) + z(1 − v)(x − a(1 − z))(v + z(1 − v))n−1,

which we can then re-write as:

zC (n) = az +
n∑

N=1

(1 − v)(x − a(1 − z))(v + z(1 − v))N−1.

(A2)

The second term on the right-hand side can be written as

n∑
N=1

(1 − v)(x − a(1 − z))(v + z(1 − v))N−1

= z(x − a(1 − z))(1 − (v + z(1 − v))n)

1 − z
.

Substituting this into equation (A2) gives us

zC (n) = az + z(x − a(1 − z))(1 − (v + z(1 − v))n)

1 − z
,

which simplifies to

zC (n) = z(x − (x − a(1 − z))(v + z(1 − v))n)

1 − z
. (A3)

Appendix 2

DERIVATION OF INVASION CRITERIA

We can now calculate the payoff of the respective strategies in

round n (see text for exact details of payoff structure). We then

obtain the following payoffs for round n:

Px (n) = Sy(1 − v) + R(v + x(1 − v)) + RzC (n)(1 − v)

+ SzD(n)(1 − v) (A4a)

Py(n) = Tx(1 − v) + TzC (n)(1 − v)

+ Py(1 − v) + PzD(n)(1 − v) (A4b)

Pz(n) = zC (n)

z
(Rx(1 − v) + Sy(1 − v) + RzC (n)(v + z(1 − v))/z

+ SzD(n)(v + z(1 − v))/z)

+ zD(n)

z
(Py(1 − v) + Tx(1 − v)

+ TzC (n)(v + z(1 − v))/z + PzD(n)(v + z(1 − v))/z)

(A4c)

where R is the payoff for mutual cooperation (“reward”), P is

the payoff for mutual defection (“punishment”), T is the payoff

for defecting against a cooperator (“temptation”) and S is the

payoff for cooperation when the other individual defects (the

“sucker’s payoff”). zC(n)/z and zD(n)/z are the probabilities of a

given generalized reciprocator being in a cooperative or defective

state, respectively.

From the above equations we can now calculate the total

payoff to strategy i as:

Pi,total =
∞∑

n=0

wn Pi (n),

where w is the probability of reaching another round. We now

wish to investigate the conditions under which generalized reci-

procity is evolutionarily stable with respect to both unconditional

defectors (which never cooperate) and unconditional coopera-

tors (which always cooperate). Generalized reciprocity will be

immune to invasion from unconditional cooperators if Pz,total >

Px,total (when z = 1, y = 0, and x→0) and will be immune to

invasion from unconditional defectors if Pz,total > Px,total (when

z = 1, x = 0, and y→0). We then analyze the model for when

generalized reciprocity can invade a population of pure defectors

(i.e., when Pz,total > Py,total and x = 0, y = 1, and z→0), and pure

cooperators (i.e., when Pz,total > Px,total and y = 0, x = 1, and z →
0). If all of these four conditions are fulfilled then we can say that

generalized reciprocity will evolve and be evolutionarily stable.

The conditions for generalized reciprocity to invade a popu-

lation of pure defectors is:

a

(
av(P + R − S − T )

1 − v2w
− P(1 + v) − S − vT

1 − vw

)
> 0 (A5)

and will be immune to invasion from pure defectors if:

a
(P(a − v − 1) + S + a(R − S − T ) + vT)

1 − w
> 0 (A6)

Generalized reciprocity will be able to invade a population

of pure cooperators if:
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(1 − a)
(T − R + v(−T + a(S + T − R) + v((a + v)(R − S) + S − aT)w + P(a − 1)(vw − 1)))

(1 − vw)(1 − v2w)
> 0 (A7)

And will be immune to invasion by pure cooperators if:

(1 − a)
(P(a − 1) + (a + v)(R − S) + S − aT)

1 − w
< 0 (A8)

Appendix 3

SEPARATION OF TIME-SCALES

The separation of time scales between the behavioral dynamics

(in terms of the proportion of generalized reciprocators that are

in a cooperative or defective state) and evolutionary dynamics

depend on w, the probability of rounds continuing: the larger

w, the greater the separation between behavioral dynamics and

evolutionary dynamics. This is because, as w increases, the pro-

portion of generalized reciprocators in the population that are in

a cooperative state will start to equilibrate. We now look at the

case in which the proportion of cooperating and defecting recip-

rocators is at equilibrium, and therefore in which there is a full

separation of behavioral and evolutionary time-scales. From equa-

tion (A3), we can look at the case after an infinitely long number

of rounds, such that n→∞. In the case in which we only have

generalized reciprocators in the population (i.e., z = 1), the equi-

librium proportion of generalized reciprocators in a cooperative

state is simply ẑD = a and ẑD = 1 − a. We can then substitute

zC (∞) = ẑC = a and zD(∞) = ẑD = 1 − a into the payoffs for

the three strategies, given by equation A4. The criteria for gen-

eralized reciprocity to be immune to invasion from unconditional

cooperators (i.e., when z = 1, y = 0, x→0) is:

(1 − a)(P − S − a(P + R − S − T ) + v(S − R)) > 0

and the condition for generalized reciprocity to be immune to

invasion from unconditional cooperators (i.e., when z = 1, x = 0,

y→0) is:

a(S + a(R − S − T ) − P(1 − a + v) + Tv) > 0

Applying the prisoner’s dilemma payoff matrix (R = b − c +
d, T = b, S = −c, P = 0) to these criteria, we recover the same

condition as the original model:

c − ad < vb < c − d(a + v)

and the same applies to the snowdrift payoff matrix (R = b − c/2,

T = b, S = b − c, P = 0), in which we obtain:

c(2 − a)

2(1 − a + v)
< b <

c(2 − a − v)

2(1 − a)
.

This demonstrates that the structuring of time-scales does

not influence the conditions under which generalized reciprocity

is an ESS.
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