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1  | INTRODUC TION

Animals are constantly exposed to environmental challenges, and 
they are selected to take decisions based on information obtained 
from their environment. Thereby, the uncertainty inherent in en-
vironmental information should be minimized by obtaining suffi-
ciently reliable cues. Collecting and using information is thus key 
to making prudent decisions (Dall, Giraldeau, Olsson, McNamara, 
& Stephens, 2005), which crucially affects an individual's fitness 
(Bradbury & Vehrencamp, 2000). While the current state of an 

animal's environment is important for effective decision-making, 
the situation can change, and hence environmental dynamics should 
be considered. This includes taking account of the range of options 
and their consequences, and the potential responses of the environ-
ment to any action an animal may take. Conditions are particularly 
complex in the social context (Dore et al., 2018; Patricelli & Hebets, 
2016), because interaction partners are likely to respond to an indi-
vidual's behaviour (Dawkins & Krebs, 1978; Patricelli, Krakauer, & 
Taff, 2016), which can markedly alter the situation. It is therefore 
assumed that animals should gather as much information as possible 
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Abstract
1.	 We generally assume that animals should maximize information acquisition about 

their environment to make prudent decisions. But this is a naïve assumption, as 
gaining information typically involves costs.

2.	 This is especially so in the social context, where interests between interacting 
partners usually diverge. The arms race involved in mutual assessment is char-
acterized by the attempt to obtain revealing information from a partner while 
providing only as much information by oneself as is conducive to one's own 
intentions.

3.	 If obtaining information occasions costs in terms of time, energy and risk, animals 
should be selected to base their decisions on a cost–benefit ratio that takes ac-
count of the trade-off between the risk of making wrong choices and the costs 
involved in information acquisition, processing and use.

4.	 In addition, there may be physiological and/or environmental constraints limiting 
the ability to obtaining, processing and utilizing reliable information.

5.	 Here, we discuss recent empirical evidence for the proposition that social deci-
sions are to an important extent based on the costs that result from acquiring, 
processing, evaluating and storing information. Using examples from different 
taxa and ecological contexts, we aim at drawing attention to the often neglected 
costs of information recipience, with emphasis on the potential role of sensory 
ecology and cognition in social decisions.
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from their social environment (Dall et al., 2005; Dall & Johnstone, 
2002). However, information acquisition, processing, storage and 
retrieval involves costs (Dukas & Kamil, 2000; Laughlin & Mendl, 
2004), so there is an essential trade-off between the urge to ob-
tain sufficient reliable information from the environment on the one 
hand, and to save investing in uneconomic acquisition of informa-
tion to instead make less informed but ‘cheaper’ decisions (Dall et al., 
2005; Dunlap, Papaj, & Dornhaus, 2017; Stephens, 1989).

The contributions to this special feature on ‘The role of sensory 
ecology and cognition in social decisions’ use different model sys-
tems to scrutinize the ecology of decision-making in the social con-
text. In this introductory chapter, we outline relevant concepts to 
provide a framework for the theme and the ensuing articles.

Individuals in social groups commonly experience interactions 
varying in strength, type and dynamics (Sueur & Mery, 2017; Székely, 
Moore, & Komdeur, 2010). Such interactions include various forms 
of competitive behaviours (e.g. aggression conducted to monopolize 
resources), cooperation (e.g. in defence, hunting or breeding) and dis-
plays (e.g. to affect social partners or to attract mates). Strategies will 
be selected that maximize inclusive fitness by adequate consideration 
of the costs and benefits involved in social decisions (Bourke, 2011).

While direct costs and benefits of social interactions have been 
quantified in several taxa, the costs and benefits associated with 
information acquisition serving to make prudent social decisions 
have received less attention. Social interactions usually involve 
an exchange of various cues and signals (Espmark, Amundsen, & 
Rosenqvist, 2000; Laidre & Johnstone, 2013). Animals may, for in-
stance, display their resource-holding potential, signal their need 
for resources or help or advertise their quality to social partners 
(Bradbury & Vehrencamp, 2011). Competition for the attention of 
social partners (Wiley, 1994) and conflicts of interest between indi-
viduals (Johnstone, 1998) promotes the evolution of costly, conspic-
uous signals (Arak & Enquist, 1995; Polnaszek & Stephens, 2014). It 
seems obvious to assume that prospective receivers of such signals 
might attempt to gather as much information from them as possible 
(Bradbury & Vehrencamp, 2000). Here, we argue that this assump-
tion may often not apply in nature because of the trade-off between 
the value of possessing perfect information and the costs involved in 
gathering, processing, keeping and retrieving this information. Our 
main focus is on the costs involved in information acquisition in a so-
cial setting, and on the trade-off between these costs and the costs 
of making wrong or suboptimal decisions.

2  | COSTLY SIGNAL S

Cues and signals can be differentiated by their origin. It is widely ac-
cepted that signals are the product of selection (Laidre & Johnstone, 
2013), whereas cues can be any biotic or abiotic attribute that may 
be used to make informed decisions (Maynard Smith & Harper, 
2003). In order to be reliable and honest, signals are assumed to 
involve costs to the producer (Searcy & Nowicki, 2005). If signals 
are costly to produce, they may reflect the underlying quality of the 

signaller, because high-quality signal producers can yield signals of 
greater intensity (handicap principle; Grafen, 1990; Zahavi, 1975, 
1977). Perhaps the most renowned example is the peacock's tail, 
where males invest in elaborate ornaments to attract females, which 
makes them more vulnerable to predators. A male signals to females 
his ability to survive in spite of being handicapped, implying his 
high genetic quality (Zahavi, 1975). Nevertheless, dishonest signals 
about a sender's quality may be expected, if the costs to the receiver 
of a signal are high to reliably evaluating the signal (Mokkonen & 
Lindstedt, 2016). With increasing assessment costs of signals, re-
ceivers may be selected to opt for cheaper, less reliable information 
instead of fully assessing all potentially available information (Ręk, 
2014), which may lead to ‘conventional’ rather than ‘costly’ signal-
ling (Vehrencamp, 2000). As Dawkins and Guilford (1991) have aptly 
stated in their seminal paper on receiver psychology and the evolu-
tion of animal signals: ‘If both the signaller and receiver pay costs, it 
will be their mutual advantage to reduce them wherever the value of 
the extra information contained in a costly signal is outweighed by 
the costs of giving and receiving the costly signal.’

3  | COSTS OF INFORMATION 
ACQUISITION

Trade-offs are a fundamental component of behavioural decisions, 
because resources such as time or energy are somewhat limited, and 
costly investments need to be balanced against each other. Thereby, 
sensory and cognitive processes play an important role (Caves, 
Brandley, & Johnsen, 2018; Del Guidice & Crespi, 2018; Endler, 
2000), as collecting and using information may be difficult and typi-
cally involves costs (Elwood & Arnott, 2012; Guilford & Dawkins, 
1991). Thus, prospective signal receivers should evaluate if collect-
ing additional information is worth the effort, or if a certain level of 
uncertainty about a signal provider is acceptable because it would 
improve the receiver's cost/benefit ratio (Dawkins & Guilford, 1991; 
Waite, 2002). This would select for context-dependent receiver re-
sponses (Tibbetts, 2008). In the following sections, we shall discuss 
optimal assessment strategies in social interactions, with special em-
phasis on the costs involved in information acquisition.

4  | THE COSTS AND BENEFITS OF 
OPPONENT A SSESSMENT

If two competitors for resources meet, in principle they can use three 
different strategies to assess each other's resource-holding potential 
(RHP; that is, the ability to win an escalated contest; Parker, 1974) 
relative to that of their opponent: self-assessment, opponent-only as-
sessment and mutual assessment (Arnott & Elwood, 2009). Mutual as-
sessment may entail the cost of providing a potentially costly signal in 
order to elicit a signal from the opponent. For instance in territory con-
tests of red deer Cervus elaphus, stags defend their harem by initially 
eliciting a low rate of roaring (Clutton-Brock & Albon, 1979), with the 
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opponent usually answering. Such roaring contests can escalate until 
exhaustion of one of the contestants, with high roaring rates reflecting 
a stag's quality. Thus, both the challenger and the defender may pay 
the costs of roaring at a high rate in order to receive honest information 
about the opponent's quality. Similarly, house crickets Acheta domes-
ticus fight frequently for burrows, mates and other resources (Hack, 
1997a; Loher & Dambach, 1989). Fights are costly in terms of energy 
and risk of injury (Hack, 1997b). Heavier males generally defeat their 
opponents (Hack, 1997a), which is why size asymmetry is the most im-
portant information to be gathered during assessment. Crickets use 
sequential mutual assessment to gain information about their oppo-
nents: each move is at the same time (energetically) costly and reveal-
ing information about the opponent (Hack, 1997a). Thus, assessment 
is not simply based on a passive process of receiving information, but 
it depends on the sequence of tactics each opponent performs. As 
each assessment step is costly, it may pay to refrain from trying to elicit 
responses from the opponent for obtaining the maximum quantity of 
information. In other words, trading of costly signals may imply that 
opponents will not always assess the full range of potentially available 
information, but instead opt for incomplete, yet cheaper information 
about the social partner.

When signals are mutually traded against each other, the costs for 
both social partners are similar, because each serve at the same time 
as signaller and receiver. Different assessment strategies may result 
in a more asymmetric distribution of costs between contestants. 
Animals may decide about a specific assessment strategy in depen-
dence of their own body condition, which may determine whether to 
save energy or gaining information about the opponent is more im-
portant. Male red-winged damselflies Mnesarete pudica, for example, 
exhibit red-coloured wings that serve as cues for competitors during 
their energetically costly aerial contests (Guillermo-Ferreira, Gorb, 
Appel, Kovalev, & Bispo, 2015). Wing pigmentation correlates with 
fat reserves, and thus males with more opaque wings are more likely 
to win a contest (Contreras-Garduño, Canales-Lazcano, & Córdoba-
Aguilar, 2006). The duration of aerial contests is positively correlated 
with the wing spot size of the loser, but not with that of the winner 
(Guillermo-Ferreira et al., 2015). As a fight is usually terminated by the 
loser surrendering to its competitor, this suggests that red-winged 
damselflies follow a self-assessment model, that is, that fight dura-
tion increases with a loser's enhanced physiological status (Elwood & 
Arnott, 2012). When wing spot size was experimentally manipulated, 
strong males changed their behaviour according to pigmentation of 
the opponent, while weaker males did not (Guillermo-Ferreira et al., 
2015). Thus, strong individuals that may benefit from fights seem 
to adopt a mutual assessment strategy, whereas weak individuals 
save assessment costs and avoid long contests. This condition-de-
pendent variation in male assessment strategies may illustrate the 
trade-off between paying the costs of assessment and taking the risk 
of unsuccessful or detrimental escalation due to limited information 
(Mesterton-Gibbons & Heap, 2013).

Status-dependent signal assessment was observed also in gelada 
baboons Theropithecus gelada. Harem males produce loud calls sig-
nalling their quality to deter challenges from bachelor males (Benítez, 

Pappano, Beehner, & Bergman, 2017). Receivers of these signals assess 
the calls in dependence of their own status and quality. Bachelor males 
respond stronger to low-quality calls, whereas harem-holders respond 
stronger to high-quality calls. By responding to low-quality calls only, 
bachelor males may benefit from avoiding confrontation with stronger 
competitors, whereas successful harem-holders often join other calling 
males of similar quality to benefit from a dilution effect against bach-
elors. Thus, bachelor and harem males use signals of divergent quality, 
and they respond differently to these signals in accordance with the 
costs entailed by their response to the received signals. Such specific 
signal assessment considering relative abilities of contestants may 
involve complex cognitive processing (Wilczynski & Ryan, 2010), but 
it can at the same time generate superior fitness payoffs (Elwood & 
Arnott, 2012).

Gathering information from a social partner may entail detrimen-
tal costs to the receiver if it is associated with exposure to external 
risks. Females often use duration, variety or persistence of a male's 
display as a criterion for choosing a mate (e.g. Burk, 1988). Thus, they 
spend considerable time close to a potential partner, which does not 
only impose costs in the form of the time spent for signal assessment 
(opportunity costs) but the vicinity to a signalling male may expose 
them also to increased predation risk, as predators are often attracted 
to signals (enhanced mortality risk; Hughes, Kelley, & Banks, 2012). 
Male decorated crickets Gryllodes supplicans, for example, call to at-
tract females from burrows where they are protected from preda-
tors. Mediterranean house geckos Hemidactylus turcicus follow these 
calls and pre-date on the female crickets that respond phonotacti-
cally to the calling males (Sakaluk & Belwood, 1984). Thus, attending 
the calls for assessing male quality puts the female crickets at risk for 
being consumed by a ‘satellite predator’. This should select females 
to adjust prudently if, where, and when to obtain signals for mate 
assessment (Hughes et al., 2012). Such an adaptive adjustment of 
the collection of social information is illustrated by adult great barred 
frogs Mixophes fasciolatus, which are highly attracted to odour cues 
of conspecifics, but respond less to these cues when a scent-hunting 
predator is present (the red-bellies black snake Pseudechis porphyri-
acus; Hamer, Lemckert, & Banks, 2011). Under predation risk, male 
frogs are however still attracted to unfamiliar conspecific scents, 
indicating that they adjust their behaviour to gather only new, im-
portant information when predators are present, while ignoring less 
informative cues from well-known individuals.

In this struggle for maximizing the information gain from social 
partners while minimizing the involved acquisition costs, it may pay 
to conceal information to a competitor. Moreover, it may even pay to 
conceal to a competitor one's information state in order to maintain 
an information advantage (Engqvist & Taborsky, 2017).

5  | THE COSTS OF PROCESSING , STORING 
AND RETRIE VING INFORMATION

To respond appropriately to the environment may pose a cogni-
tively demanding challenge particularly with regard to the social 
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environment of an individual, due to the inherent dynamics and in-
volved conflicts of interest (Varela, Teles, & Oliveira, 2020; Weitekamp 
& Hofmann, 2014). The first difficulties for desiring receivers of so-
cial cues and signals regard perception, detection and recognition of 
relevant signals. Not all information apparently available can be per-
ceived by the central nervous system of an animal due to constraints 
of the receiving and processing apparatus (Caves et al., 2018; Römer, 
2020). Moreover, the brain needs to interpret the information received 
by means of the sensory and neural systems. Perceptual salience 
filters and targeted attention help to sort the wheat from the chaff 
(Knudsen, 2007; Nityananda, 2016). The different steps in signal per-
ception involve costs (Sartori, Granger, Lee, & Horowitz, 2014), both 
at the level of processing (e.g. material and energy demands; Maille & 
Schradin, 2017; Niven & Laughlin, 2008) and interpretation (e.g. dis-
cerning relevant from less significant information; Knudsen, 2018). If 
the costs for fully assessing a signal is high, receivers may be selected 
to settle for cheaper, but less reliable information instead (Dawkins 
& Guilford, 1991). Male corncrakes Crex crex, for example, perform 
quiet, low-frequency, amplitude-modulated ‘soft calls’ during terri-
torial conflicts, which are physically difficult or costly to produce for 
small birds (Fletcher, 2007). Thus, reliability of information in the call 
is likely to be maintained by an inherent cost. The frequency spectrum 
of the call, being rather complex, is however also supposedly costly 
to assess for the receiver. Corncrakes respond preferably to signals 
that are cheaper regarding assessment, although they are less reliable 
(Rek, 2014). Animals respond indiscriminately to soft calls, although its 
fundamental frequency is a strong predictor of male size. They appar-
ently ignore this cue, which might be expensive to assess, thus it seems 
not to act as signal under natural condition. Therefore, although corn-
crakes might gain additional information about their opponent by in-
vesting in assessment, they seem to resort to less reliable, but cheaper 
information instead. This strategy may be widespread when signal pro-
cessing puts high demands on sensory and cognitive procedures. In 
addition, constraints on social memory may limit optimal behavioural 
responses, for example, the possibility to cooperate efficiently with 
social partners (cf. Furlong & Opfer, 2009; Milinski & Wedekind, 1998; 
Stevens, Volstorf, Schooler, & Rieskamp, 2011). This may select for the 
application of simpler response strategies (e.g. generalized reciproc-
ity; Barta, McNamara, Huszár, & Taborsky, 2010; Gfrerer & Taborsky, 
2017; Leimgruber et al., 2014; Pfeiffer, Rutte, Killingback, Taborsky, & 
Bonhoeffer, 2005; Rutte & Taborsky, 2007; Stanca, 2009; van Doorn 
& Taborsky, 2012).

6  | SIGNAL COMPLE XIT Y

Information should be effectively transmitted in order to affect the 
behaviour of the receiver. While the environment itself plays an impor-
tant role in the transmissibility of a signal, the receivers ‘psychological 
landscape’ is crucial as well (Guilford & Dawkins, 1991). Signal design 
contains two components: A ‘strategy’ component, which reflects sig-
nal construction by natural selection to adequately convey the desired 
information (e.g. competitors or potential mates displaying their health 

status or RHP), and an ‘efficacy’ component, which concerns the trans-
mission design of a signal (e.g. conspicuousness against background 
noise). The efficacy of a signal depends on its detectability (how easy it 
can be distinguished from the background), discriminability (how easy 
it can be distinguished from other stimuli) and memorability (how easy 
it can be memorized and retrieved).

Multiple communication channels and sensory systems may be 
involved in signal transmission, which can greatly affect signal effi-
cacy (Partan & Marler, 2005). For instance, the addition of chemical 
signals to visual signals can play an important role during agonistic en-
counters in fish (Frommen, 2020), as shown in the cooperative cichlid 
Neolamprologus pulcher. In this species, chemical information trans-
ferred by urine bouts is crucial for controlling the level of escalation in 
territory conflicts, where the sole transmission of visual signals results 
in much higher aggression levels than when chemical information is 
available as well (Bayani, Taborsky, & Frommen, 2017). The ecologi-
cal context can profoundly influence the processes by which animals 
perceive multisensory stimuli, especially with regard to environmen-
tal uncertainty (Munoz & Blumstein, 2012). To unravel the neuronal 
processes involved in the cross-modal association of social stimuli is a 
challenging target for future research (Moll & Nieder, 2015).

Despite the potential for multicomponent stimuli to reduce uncer-
tainty relative to single-component cues, animals may not necessarily 
utilize all components of multisensory information, depending on un-
derlying costs and benefits of perception and information processing. 
Rainbow trout Oncorhynchus mykiss, for instance, settle their social 
hierarchy through visual and olfactory cues released by dominant in-
dividuals (Höjesjö, Axelsson, Dahy, Gustavsson, & Johnsson, 2015). 
However, subordinates react to the combination of both cues similarly 
as to visual exposure alone, suggesting that visual cues are more im-
portant than chemical cues for recognition and response decisions. 
Subordinate fish move closer to the dominant, likely as a type of in-
spection behaviour (Dugatkin & Godin, 1992). As the extra information 
provided when adding chemical cues does not change the behaviour 
or physiological response of subordinates, multimodal signal transmis-
sion seems to be redundant in this system. Visual information has been 
suggested to be more accurate, direct and reliable, while chemical cues 
may be more diffuse, for example, due to mixing with chemicals orig-
inating from different individuals. Olfactory cues may function, how-
ever, as a first cue alerting receivers to the presence of a second, visual 
cue, which may increase the probability of detection and recognition 
by the receiver (cf. Smith & Belk, 2001).

7  | E VOLUTIONARY ECOLOGY OF SOCIAL 
DECISIONS IN THE LIGHT OF SENSORY 
AND NEUR AL MACHINERY

The role of sensory ecology and cognition in social decisions was 
the theme of a recent workshop we have organized at Arolla in 
the Swiss Alps. It seemed timely to discuss the state of the art and 
future directions of this emerging and highly topical research field. 
Several keynote speakers of this workshop were glad to provide 
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insight into their personal views and approaches through contri-
butions to this special feature of Functional Ecology, and other ex-
perts were joining on the way of compiling this volume. Its primary 
aim is to provide the reader with insights, opinions and examples 
from a field that is highly integrative by its very nature. This makes 
it utterly impossible to be comprehensive, or even approximately 
representative. Rather, these contributions can provide a brief 
glimpse of aims, concepts and empirical research in this develop-
ing branch of evolutionary ecology.

In their article, Susana Varela, Magda Teles and Rui Oliveira 
(Varela, Teles, & Oliveira, 2020) draw a firm line between social cog-
nition and social competence, the former being viewed as a by-prod-
uct of natural selection on the latter. Their conceptual framework 
highlights that selection directly acts on functional performance 
traits such as choosing mates, raising offspring and forming social 
bonds, while lower ranking traits such as social and non-social cog-
nition constitute correlated, secondary targets of selection. They 
propose that enhanced social cognitive abilities should evolve if 
selection favours social competence, which will in turn affect the 
significance of social learning in the ecology of a species.

Rachel Page and Ximena Bernal relate selection on sensory 
strategies to detect prey to the ecology of predator–prey dynamics,  
focusing on bats in a comparative framework (Page & Bernal, 2020). 
Predation is an important force selecting potential prey to be cryptic, 
which prompts predators to adjust their sensory strategy appropriately  
in order to detect prey. To this end, predators may use both pri-
vate and social information. Using a comparative framework, this 
article illustrates that bats often use cues, signals or behaviours 
of other individuals to gather information during foraging. Each 
of these strategies comes with its own set of costs and benefits, 
depending on the particular environment of the species. The 
successful integration of public and private information and the 
trade-offs involved in information acquisition are core questions 
in this field of research.

Using acoustic communication in insects as an example, Heiner 
Römer draws our attention to the limitations complex environments 
can pose on the transmission of signals, and on the design of the 
sensory and neural system of receivers. To understand the design 
of insect sensory systems, laboratory studies elucidating the neu-
rological pathways of signal transfer and processing must be com-
plemented by studies of the ecology of target species to unravel the 
role of complex environments in the transfer of information. Here, 
the specific focus is on spatial and temporal partitioning in the sig-
nalling of species in multispecies assemblages, which serves to re-
duce acoustic masking interference.

Joachim Frommen (Frommen, 2020) focusses on the specific 
conditions characterizing the aquatic medium when intentions are 
communicated among social partners. Most studies of the sensory 
modalities involved in aggressive encounters have so far focussed 
on terrestrial animals using visual and acoustic information. Here we 
learn how aquatic organisms signal aggressive potential, and how in-
formation delivered and obtained can reduce the costs and risk of 
injury in agonistic encounters.

Knörnschild, Fernandez, and Nagy (2020) compare the com-
plexity of calls, and the role of complex social environments for in-
traspecific communication between different species of bats. Bat 
calls encode information on individual identity, sex and relatedness, 
which receivers can use to make decisions about mate choice, ter-
ritorial defence, resource allocation and cooperation. Vocal com-
plexity is hypothesized to increase with social complexity, which is 
tested using a comparative approach based on phylogenetically in-
dependent contrasts. As predicted, the complexity of vocalizations 
increases with social group size, highlighting the importance of mak-
ing use of complex information in a social context.

In our introductory chapter to this special feature we have aimed 
at drawing attention to the inevitable costs involved in the acquisi-
tion of conducive environmental information in the social context. 
These costs vary depending on whether receivers choose to pay for 
full assessment or to settle for a less informative situation involving 
less heavy burden (Dawkins & Guilford, 1991). Since Zahavi (1975, 
1977) drew our attention to the significance of costs involved in sig-
nal production in order to convey a reliable message, the research 
focus has largely been on the costs of producing rather than on the 
costs of receiving a signal. However, as we have outlined above, for 
understanding the evolutionary ecology of social decisions we need 
to study also the manifold costs involved in gathering, assessing 
and storing information. Thus, the popular idea that animals should 
gather as much information as possible in order to opt for the best 
decision may not be realistic in the natural world. Instead, individ-
uals should trade-off costs that are caused by acquiring additional 
information against the risk of taking wrong decisions (e.g. Bradbury 
& Vehrencamp, 2000; Enquist & Leimar, 1983; Koops, 2004). 
Abandoning expensive assessment contests may pay under cer-
tain circumstances even at the expense of being less well informed 
as a consequence (e.g. in red deer and house cricket), especially if 
self-assessment has revealed a relatively low RHP (e.g. in red-winged 
damselflies). The ecological context is of crucial importance when 
deciding about the optimal investment in obtaining social infor-
mation, such as predation risk (e.g. in decorated crickets and great 
barred frogs) or the availability of alternative opportunities (e.g. in 
galagos). Hence, our message is that the role of sensory ecology and 
cognition in social decisions must be viewed in an ecological context 
when aiming to unveil the evolution of animal communication and 
social structure.
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