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Generalized reciprocity (help anyone, if helped by someone) is a minimal strategy capable of supporting cooperation between

unrelated individuals. Its simplicity makes it an attractive model to explain the evolution of reciprocal altruism in animals that

lack the information or cognitive skills needed for other types of reciprocity. Yet, generalized reciprocity is anonymous and thus

defenseless against exploitation by defectors. Recognizing that animals hardly ever interact randomly, we investigate whether

social network structure can mitigate this vulnerability. Our results show that heterogeneous interaction patterns strongly support

the evolution of generalized reciprocity. The future probability of being rewarded for an altruistic act is inversely proportional to the

average connectivity of the social network when cooperators are rare. Accordingly, sparse networks are conducive to the invasion of

reciprocal altruism. Moreover, the evolutionary stability of cooperation is enhanced by a modular network structure. Communities

of reciprocal altruists are protected against exploitation, because modularity increases the mean access time, that is, the average

number of steps that it takes for a random walk on the network to reach a defector. Sparseness and community structure are

characteristic properties of vertebrate social interaction patterns, as illustrated by network data from natural populations ranging

from fish to primates.

This article was published online on October 28, 2011. An error was subsequently identified. This notice is included in the online and print versions to

indicate that both have been corrected November 2, 2011.
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upstream indirect reciprocity.

The occurrence of cooperation between unrelated individuals is

an evolutionary riddle, because bearing fitness costs for the sole

benefit of nonkin others appears maladaptive at first sight (West

et al. 2007; Clutton-Brock 2009). Theoretical models (Doebeli

and Hauert 2005; Lehmann and Keller 2006) provide proof-

of-principle that seemingly altruistic behavior can nevertheless

evolve and persist if it is based on reciprocity (Trivers 1971;

Axelrod and Hamilton 1981; Nowak and Sigmund 1998; Pfeiffer

et al. 2005; Nowak 2006). If others reciprocate, it is beneficial to

cooperate, because the costly act of providing help increases the

probability of receiving assistance in the future, whereas defection

is likely to be punished by the withdrawal of future help.

To what extent reciprocity can explain the behavior and so-

ciality of biological organisms is subject to debate (Hammerstein

2003; Clutton-Brock 2009). One concern is that the assumptions

of theoretical models differ in important ways from the observed

structure of real interactions. For example, animals are usually

not restricted to interact repeatedly with the same partner, nor do

social interactions occur at random (Croft et al. 2008; Whitehead

2008). Moreover, individuals often have strategic options that

are not captured by traditional models of reciprocal altruism

(Hauert et al. 2002; Connor 2010). Several authors have therefore

emphasized alternative processes that may have contributed to

the evolution of cooperation (e.g., pseudo-reciprocity, by-product

6 5 1
C© 2011 The Author(s). Evolution C© 2011 The Society for the Study of Evolution.
Evolution 66-3: 651–664



G. S. VAN DOORN AND M. TABORSKY

mutualism, and biological markets; Connor 1995; Leimar and

Hammerstein 2010). Others have explored the consequences of

population structure on the evolution of reciprocal cooperation

(Ohtsuki et al. 2006; Santos et al. 2006; Taylor et al. 2007;

Rankin and Taborsky 2009). Dissatisfaction with models of reci-

procity has also grown because the strategies proposed in the-

oretical models are unlikely to be realized by evolution in real

organisms (Clutton-Brock 2009). Specifically, direct and indirect

reciprocity require memory of the identity and past behavior of

social partners, which has been shown to constrain cooperation in

animals (Stevens et al. 2005), including even humans (Milinski

and Wedekind 1998).

Here, we explore several of these issues by investigating the

evolution of generalized reciprocity, a cognitively simple con-

ditional cooperation mechanism, in populations with a realistic

interaction structure. Generalized reciprocity, also known as up-

stream tit-for-tat (Boyd and Richerson 1989), upstream indirect

reciprocity (Nowak and Roch 2007), or pay-it-forward reciprocity

(Fowler and Christakis 2010), works by the simple rule “help any-

one, if helped by someone” and has been demonstrated in humans

and other animals (Greiner and Levati 2005; Bartlett and DeSteno

2006; Rutte and Taborsky 2007, 2008; Stanca 2009). In compari-

son to other types of reciprocity, generalized reciprocity requires

minimal cognitive abilities and very little information retention

and retrieval. Individuals decide to cooperate or not just depen-

dent on whether they have been helped or not, irrespective of who

has helped and who is there to be helped. In other words, there

is contingency between received help and cooperation, but not

between the identities of donors and receivers. The simplicity of

generalized reciprocity comes at a cost in terms of an increased

vulnerability to exploitation. Because the strategy is anonymous,

it is impossible to single out and punish defectors. Nevertheless,

generalized reciprocity has been shown to be evolutionarily sta-

ble if individuals interact repeatedly in groups consisting of a few

individuals (Pfeiffer et al. 2005), in viscous populations (Rankin

and Taborsky 2009), or when evolving in combination with group

leaving strategies (Hamilton and Taborsky 2005), more complex

forms of reciprocity (Nowak and Roch 2007) or state-dependent

updating rules (Barta et al. 2011). However, it is unclear whether

interaction patterns found in real organisms would be able to

support cooperation based on generalized reciprocity.

Social interactions among animals are structured according

to obvious factors such as sex, age, and kinship (Berman 1982;

Ruckstuhl 2007; Wiszniewski et al. 2010), as well as less-apparent

characteristics such as familiarity, personality, and sociability

(McPherson et al. 2001; Manno 2008; Pike et al. 2008; Croft

et al. 2009; Pinter-Wollman et al. 2009;Schürch et al. 2010). As

a result, individuals differ in the quality and quantity of their

interactions with others, contributing to a heterogeneous net-

work of social interactions within a population (Croft et al. 2008;

Wey et al. 2008; Sih et al. 2009). Such social networks have been

studied for a long time in humans (Newman 2003, and references

therein). More recently, they have been scrutinized also in animal

species ranging from eusocial insects (Naug 2008) to fish (Croft

et al. 2004), birds (Oh and Badyaev 2010), and mammals

(Chaverri 2010; Wey and Blumstein 2010; Kerth et al. 2011),

including cetaceans (Lusseau and Newman 2004; Wiszniewski

et al. 2010), primates (Voelkl and Kasper 2009), and farm ani-

mals (Gygax et al. 2010). Some social network studies have been

performed in relatively large populations (e.g., Wolf and Trillmich

2008; Oh and Badyaev 2010), providing opportunities to confront

evolutionary models of cooperative behavior with observed pat-

terns of social organization in animals.

Network structure can influence the evolution of general-

ized reciprocity by two mechanisms that act on different time

scales. The first mechanism is network reciprocity (Nowak 2006),

which can in principle be explained by inclusive fitness arguments

(Taylor et al. 2007). It occurs when dispersal is limited and off-

spring settle in the network neighborhood of their parents, such

that individuals are on average more likely to interact with kin

(Wolf and Trillmich 2008; Wolf et al. 2011). Such population

structure favors the evolution of cooperation in general (Ohtsuki

et al. 2006; Taylor et al. 2007; but see West et al. 2002), be it

by direct (Ohtsuki and Nowak 2007) or generalized reciprocity

(Iwagami and Masuda 2010). The second mechanism, which will

be the focus of this article, is directly related to the pattern of

social interactions and the way in which it controls the flow

of information in animal populations (Krause et al. 2007; Croft

et al. 2008). It is particularly relevant to the evolution of gen-

eralized reciprocity, which, unlike direct reciprocity, can cause

cooperative behavior to spread through a social network like an

information transfer process. That is, if reciprocity is generalized,

an initial act of cooperation triggers a sequence of cooperative acts

that cascades in the social network from one anonymous partner to

the next (Nowak and Roch 2007; see Fowler and Christakis 2010

for an experimental demonstration of this effect in humans). Indi-

viduals who participate in a sequence of generalized reciprocation

can expect to receive future help in return for providing assistance

to an anonymous partner, if the same sequence on average visits

an individual more than once. The probability of this happening is

expected intuitively to depend on structural properties of the so-

cial interaction network, such as sparseness, clustering, and mod-

ularity. For example, groups of cooperators are partially shielded

from exploitation by defectors in populations that are subdivided

into smaller communities (Hamilton and Taborsky 2005; Pfeiffer

et al. 2005). By extension, one would therefore predict modular

networks to provide a more favorable context for the evolution of

generalized reciprocity than randomly connected ones. The aim

of this article is to make these qualitative arguments more precise,

and to investigate which particular network properties are critical

6 5 2 EVOLUTION MARCH 2012



GENERALIZED RECIPROCITY ON SOCIAL NETWORKS

to the evolution of cooperation based on generalized reciprocity.

To this end we will develop a simple model of anonymous re-

ciprocal cooperation and study its dynamics on various networks,

using individual simulations and analytical techniques. The in-

sights from these systematic investigations are then applied to a

dataset of empirical networks collected from the literature, to see

to what extent realistic interaction patterns are conducive to the

evolution of generalized reciprocity.

The Model
We consider a group of N individuals that exhibit pairwise in-

teractions with their immediate neighbors on a social interaction

network. The cooperative interactions occurring on the network

are based on generalized reciprocity. When individuals receive

help, they may reciprocate to a random individual among their

neighbors in the network. We consider two simple discrete strate-

gies. Individuals are either reciprocal altruists or defectors. Re-

ciprocal altruists always reciprocate when they receive help; de-

fectors never reciprocate. Providing assistance is costly for the

actor and beneficial for the receiver of the helpful act. The corre-

sponding fitness cost and benefit are measured by the parameters

c and b, respectively, with 0 ≤ c � 1 and 0 ≤ b � 1, implying

that selection is weak. [Correction made here after initial online

publication.]

To keep track of the state of the population, we define ft as

the frequency of reciprocal altruists at generation t . The expected

change in ft from one generation to the next is proportional to the

relative fitness difference between altruists and defectors, that is,

� ft = ft (1 − ft )
πA − πD

W̄
, (1)

where W̄ = 1 + ft πA + (1 − ft ) πD is the mean fitness, and πA

and πD denote the expected payoffs of altruists and defectors,

respectively (Hofbauer and Sigmund 1998).

PAYOFFS AND FITNESS GRADIENT

A spontaneous act of altruism initiates a sequence of reciprocated

interactions that will jump from one reciprocal altruist to the next

until it eventually hits a defector. This sequence travels over the

network as a random walk (Nowak and Roch 2007), due to the

fact that generalized reciprocation is anonymous. The random

walk may return one or several times to an arbitrary reciprocal

altruist i that it has already visited, before it eventually terminates.

Let ki denote the number of such return events. As indicated by

the subscript, ki depends on the position of individual i in the

network. At each return event, the payoff of the focal individual

increases by b and then decreases by c as help is reciprocated to

a random neighbor. If individual i initiated cooperation, then its

payoff has changed by an amount ki b − (ki + 1) c by the time

the random walk ends. If cooperation was initiated by another

individual, then individual i gains (ki + 1)(b − c) payoff units

over the total length of the random walk. The expected payoff

accumulated by reciprocal altruists is therefore given by

πA = E[(n + n′
i )(b − c)(ki + 1) − n b], (2)

where n is the expected number of times that the focal individual

initiates cooperation, and n′
i denotes the expected number of times

that individual i is hit for the first time by a sequence of altruistic

interactions that originated elsewhere on the network. Without

loss of generality, we choose n = 1 in the analytical treatment

of the model. As elsewhere in this manuscript, the expectation in

equation (2) is taken over all positions in the network.

If we conservatively assume that only reciprocal altruists ini-

tiate cooperation, then the expected payoff of defectors is given

by πD = b n̄′, where n̄′ = E[n′
i ] = ft/(1 − ft ). This follows be-

cause every sequence that is initiated by a reciprocal altruist must

eventually terminate at a defector. Combining this result with

equation (2) and assuming E[n′
i ki ] ≈ n̄′k̄ produces an approxi-

mate expression for the fitness gradient, ∂W ,

∂W = πA − πD

W̄
≈ b k̄ − c (k̄ + 1)

1 − ft + ft (b − c) (k̄ + 1)
. (3)

Since n′
i and ki both increase with the degree (i.e., the num-

ber of neighbors) of individual i, the approximation E[n′
i ki ] ≈ n̄′k̄

amounts to assuming that the coefficient of variation of the net-

work’s degree distribution is small.

INDIVIDUAL-BASED SIMULATIONS

Throughout this article, analytical results, based on equations

(1)–(3) and the derivations in the online supporting information,

are complemented with the results of individual-based computer

simulations. The simulations keep track of a population of indi-

viduals with a constant size N, corresponding to the number of

nodes in the social interaction network. Generations are discrete

and nonoverlapping. At the start of each generation, each indi-

vidual is randomly assigned a node in the network, which it then

occupies for its entire life (global offspring dispersal prevents

kin selection from operating in our model). We simulate a large

number of n × N random walks to estimate the payoff of each

individual (individual i has payoff πi = 0 at the start of its life).

Each random walk is initiated by selecting a random indi-

vidual. If that individual is a defector then the random walk stops

immediately. Otherwise, the random walk jumps to a random

neighboring node until it arrives at a defector. When the random

walk jumps from node i to node j, the payoff of individual i is

decreased by c/.n and the payoff of individual j is increased by

b/.n (this scaling of the payoffs makes the simulations directly

comparable to the analytical results, where we took n = 1 for

simplicity). When all random walks have terminated, individuals
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produce offspring. The individuals who reproduce are sampled

with replacement from the population with probabilities propor-

tional to their relative fitness values wi = (1 + πi )/W̄ . Reproduc-

tion is assumed to be clonal. The life cycle is completed when the

offspring undergo mutation and replace the parental generation.

Mutations occur with probability μ and induce an individual to

switch strategy.

Results
GENERAL PROPERTIES OF THE MODEL

Solving ∂W > 0 from equation (3) shows that selection favors

reciprocal altruism if

c < b
k̄

k̄ + 1
. (4)

Given that k̄ ≥ 0, this condition cannot be satisfied if c > b,

implying that generalized reciprocity cannot evolve if the costs

of a helpful act to the actor outweigh its benefits to the receiver.

More interesting outcomes occur when b > c, and we will focus

on this parameter regime from here onwards.

The fraction k̄/(k̄ + 1) that appears in condition (4) measures

the expected future yield to reciprocal altruists of help that is cur-

rently being provided. As this quantity applies to the population

of reciprocal altruists as a whole, we will refer to it as the col-

lective yield (denoted as Y ). We also define the individual yield

for a specific node i in the network as yi = ki/(ki + 1). Note

that, in general, Y �= E[yi ], although our simulations indicate that

the approximation Y ≈ E[yi ] is reasonably accurate in most

cases.

The collective and individual yields depend strongly on

the frequency of conditional altruists in the population. Clearly,

if an individual is the only conditional altruist in the popula-

tion, then its individual yield is minimal; the other individu-

als do not reciprocate, and yi = Y = 0. Conversely, if the en-

tire population consists of reciprocal altruists, then the individual

and collective yields attain their maximal value yi = Y = 1. In

this case, help is transmitted indefinitely such that, in a finite

population, an individual who initiated or reciprocated help is

bound to reap the benefits of that act at some time in the fu-

ture. Between these two extremes, the collective yield increases

monotonically with the frequency of reciprocal altruists (see the

analytical results in the online supporting information), which

leads to the prediction that there is a unique intermediate fre-

quency f ∗ at which reciprocal altruists and defectors have equal

fitness.

The initial spread of reciprocal altruists in a population of

defectors is opposed by selection as long as the frequency of

reciprocal altruists is below the critical frequency (∂W < 0 if

ft < f ∗). However, it is conceivable that mutation, drift, or mi-

gration (temporarily) cause the frequency of reciprocal altruists to

increase beyond f ∗, in which case, selection can promote the fur-

ther spread of reciprocal altruists (∂W > 0 if ft > f ∗). Whether

this is likely depends on the magnitudes of b and c relative to the

effective population size (i.e., on the importance of drift relative

to that of selection) and on the functional dependence of Y on ft ,

which determines the value of f ∗ for a given ratio of b and c.

Figure 1A shows an example that was calculated for a published

network of preferred companionships in a small isolated popula-

tion of bottlenose dolphins (Tursiops spp.) (Lusseau 2003). This

example network (depicted in the upper left corner of Fig. 1A)

contains 62 nodes and 159 edges. Large differences in the individ-

ual yield of altruism exist between nodes in the network (stepped

gray lines indicate the distribution of individual yields), but the

collective yield falls accurately within the range that is predicted

by the analytical results (dashed lines; see the online supporting

information and the section Analytical Results below). Variation

in the individual yields is explained by differences in the po-

sitions of individuals in the network (e.g., yields are positively

associated with degree and various measures of node centrality;

data not shown). The critical frequencies indicated for this net-

work (dotted lines) are for b/.c = 10 (lower line; f ∗ = 0.44),

b/.c = 5 (middle line; f ∗ = 0.71), and b/.c = 2.5 (upper line;

f ∗ = 0.92). Results for other animal social interaction networks

collected from the literature (Fig. 1B–L; see Table S1 for refer-

ences to the original data sources) show a similar correspondence

between analytically predicted upper and lower bounds for the

collective yield and individual-based simulations, while demon-

strating considerable variation in the shapes of the curves and the

critical frequencies across species with different types of social

interaction patterns.

Individual-based simulations of the model illustrate that re-

ciprocal altruists can spread on the dolphin network under the

influence of mutation, drift, and selection. Figure 2A shows how

the frequency of the reciprocal altruists changes during a run with

b = 0.025, c = 0.005, and μ = 1·10−4. Evolution is mutation-

limited for this combination of parameters: the population is

fixed for either defectors or reciprocal altruists during most of

the time and we occasionally observe rapid transitions between

the two states. The waiting time to a transition from a population

of defectors to one that consists entirely of reciprocal altruists

is shorter than the time to a transition in the reverse direction.

Longer simulations show that the difference is more than three-

fold (Fig. 2B), indicating that a population of altruists is relatively

stable against invasion by defectors (more so than a population

of defectors against invasion by altruists, even though the crit-

ical frequency is as high as 0.71). The long-term average fre-

quency of reciprocal altruists reaches 0.75 under these particular
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Figure 1. Collective and individual yield of altruism in various animal social interaction networks. (A) The yield of altruism yi = ki/[1 + ki ]

for individual nodes in a bottlenose dolphin network was estimated at discrete values of the frequency of reciprocal altruists ( f =
0 , 1

62 , 2
62 , . . . , 61

62 , 1). Each estimate was based on 62,000 replicate individual-based simulations to obtain an expectation over the

distribution of reciprocal altruists over the network. Gray stepped lines indicate the distribution of individual yields at each frequency

(shown are minimum, maximum, and median, and the 1st and 3rd quartiles with the interquartile range shaded in light-gray). The

median of the individual yields nearly coincides with the collective yield (dark-gray line with filled circles), which converges at high and

low frequencies of reciprocal altruists, respectively, to the upper and lower bounds predicted by our analytical results (dashed lines).

Critical frequencies for the spread of reciprocal altruism under selection are indicated by dotted lines for different ratios of the payoff

parameters b and c (b/c = 2.5, b/c = 5, and b/c = 10). The other panels show simulation results, analytical upper and lower bounds

for the collective yield, and the critical frequency at b/c = 5, for a selection of networks from our dataset (see Table S1). (B) Trinidadian

guppy, (C) African cichlid, (D) House finch, (E) Bechstein’s bat, (F) Leaf-roosting bat, (G) Yellow-bellied marmot, (H) Galapagos sea lion,

(I) Collared mangabey, (J) Vervet monkey, (K) Hamadryas baboon, (L) Guinea baboon. All networks in this study were drawn using a

spring-embedding algorithm implemented in Netdraw 2.087 (Borgatti 2002).

parameter conditions. The difference in the stability of popula-

tions fixed for either defectors or reciprocal altruists is explained

by the fact that selection against cooperation in populations with

a majority of defectors is much weaker than selection favoring

cooperation in populations with a majority of conditional altruists

(Fig. 2C). Generalized reciprocity is a conditional strategy that

induces cooperation only in the presence of other cooperators.

The per-capita cooperation rate is therefore inherently higher in

populations nearly fixed for reciprocal altruism (Peña et al. 2011),

generating large selection differentials that are far harder to over-

come by drift than the selection differentials in populations that

consist mainly of defectors. This asymmetry would even be more
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Figure 2. Evolution of generalized reciprocity in individual-based simulations. (A) Trajectory of the frequency of reciprocal altruists

during an individual-based simulation on the dolphin network with b = 0.025, c = 0.005, and μ = 1 · 10−4. The population is nearly

fixed for either defectors or reciprocal altruists for most of the time, showing occasional rapid transitions between the two states. (B)

The time between transitions follows an exponential distribution (plotted on log-linear axes, the data fall along a straight line), but

transitions from a population of defectors to a population of reciprocal altruists (solid squares) tend to occur sooner than transitions in

the reverse direction (open circles). Based on the slopes of the least-squares best linear fits to the data (dotted lines), the transition rates

are estimated at, respectively, 8.77 · 10−5 and 2.68 · 10−5 per generation. (C) The difference in transition rates is explained by the high

number of cooperative interactions at high frequencies of reciprocal altruists, which has a proportional effect on the absolute magnitude

of the relative payoff difference between reciprocal altruists and defectors (∂W as defined in the text; solid circles: simulation results; solid

line: analytical prediction). The long-term fitness gradient estimated from the fixation probabilities (open squares: simulation; dashed

line: analytical prediction based on a Wright–Fisher model) show the same effect, indicating that selection is stronger (relative to drift)

in populations of altruists than in populations of defectors.

pronounced if also defectors would occasionally spontaneously

initiate cooperation, for example, as a result of errors in decision

making.

DEPENDENCE ON THE STRUCTURE OF THE SOCIAL

NETWORK

To further investigate the connection between network structure

and the collective yield of altruism, we artificially constructed net-

works with varying structural properties. A comparison between

the results of simulations on these networks indicates that sparsely

connected, small communities offer an optimal substrate for the

evolution of generalized reciprocity. Figure 3 illustrates the effects

of three key structural network properties: average connectivity,

modularity, and the pattern of connections between communi-

ties. A comparison of the critical frequencies (i.e., the frequency

f ∗ that must be reached before selection can support the spread

of generalized reciprocity; eq.4) between different networks pro-

vides a simple heuristic to predict differences in the likelihood of

invasion of reciprocal altruism. The example networks shown in

Figure 3 all have 128 nodes and are regular, meaning that nodes

within a network have identical degree. The networks differ in

the total number of links (Fig. 3A–C), the amount of clustering

(Fig. 3D–F) and the distribution of links over different levels of

social organization (Fig. 3G–I).

Average degree has a strong effect on the evolution of recip-

rocal altruism. Figure 3A–C illustrates this for regular networks

with degrees 2, 4, and 8, respectively (the only connected regular

network with degree 2 is a cycle). The collective yield of altru-

ism increases linearly with the frequency of reciprocal altruists

in populations that predominantly consist of defectors (see the

section Analytical Results below). For unweighted networks, the

slope of this linear relationship is given by the inverse of the av-

erage degree. Accordingly, the critical frequency for the spread

of reciprocal altruists becomes prohibitively large if individuals

interact with many other individuals within their population. In

highly connected networks, a random walk of altruistic interac-

tions can typically reach any arbitrary individual in the population

within a small number of steps. As a consequence, the random

walk quickly diffuses away from the social neighborhood of the

individual who initiated help, reducing the probability that help is

reciprocated and undermining the incentives for altruistic behav-

ior (Fletcher and Doebeli 2009).

The dominant effect of network sparseness is mitigated by

community structure. The networks in Figure 3D–F were created
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Figure 3. Dependence of the collective yield of altruism on network structure. Each panel shows individual-based simulation estimates

of the collective yield (gray curves) as a function of the frequency of reciprocal altruists, with the corresponding upper and lower bounds

(dashed lines) predicted by the analytical results. Dotted lines indicate critical frequencies for b/c = 5. (A–C) Regular networks with

degrees 2, 4, and 8, respectively. (D–F) Regular networks with degree 6 and no, little, or strong clustering. (G–I) Regular networks with

degree 7 that differ in the distribution of links across levels of social organization (see text for details; white and black node coloring

highlights bipartite structure at low (G) or a high (I) level of organization).

by randomly replacing links within densely connected elemen-

tary clusters of 16 individuals with links between these clusters,

without changing the degree of the nodes involved in the rewiring

step (all nodes have degree 6 in the networks of Figure 3D–F). We

varied the number of rewiring steps to create an unclustered net-

work (Fig. 3D), in which connections between individuals were

randomized, as well as weakly and strongly modular networks

(Fig. 3E,F). Modularity facilitates the evolution of generalized

reciprocity (the critical frequency f ∗ is lowest in panel F), but its

positive effects on the collective yield appear primarily in popu-

lations that consist mainly of reciprocal altruists. This is because

community structure increases the frequency of random walks

that visit (at least) two other reciprocal altruists before return-

ing to the individual who initiated cooperation. The probability

that such a random walk occurs is of the order of f 2
t (i.e., the

probability that two adjacent neighbors are reciprocal altruists),

which bounds the effect of modularity on the collective yield.

The biological implication is that community structure does little

to promote the invasion of reciprocal altruists in a population of

defectors, but can greatly support the stability of a population

of altruists against invasion by defectors. This effect is illus-

trated in Figure 4A,B for an idealized network that consists of
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Figure 4. Modularity shelters altruists against exploitation by defectors. The network in (A) is subdivided in two dense communities

with sparse connections between them. A single defector (triangle in box) in a population of altruists (circles) can exploit the altruists in

its own community, but not those in other parts of the network. Nodes are colored according to the number of times individuals receive

help from a single neighbor (lighter shades of gray correspond to higher values and indicate a higher payoff). (B) The two-community

structure of the network is captured by the eigenvector of the Laplacian that is associated with the smallest nonzero eigenvalue λ2 (nodes

are colored according to the elements of this eigenvector). Equation (8) accurately predicts the Laplacian eigenvalue associated with the

partitioning. With VA = VB = 512 and VA×B = 32, the value of λAB calculated from equation (8) matches exactly with the numerically

calculated value, λ2 = 0.125. The network in (C) is almost a bipartite graph, that is, the nodes can be subdivided in two groups with

sparse connections within each group but many links between the two parts. A single defector is able to exploit the entire population of

reciprocal altruists, strongly reducing the average payoff (panels [A] and [C] use identical gray scales). (D) The structure of the network

is accurately reflected by the Laplacian eigenvector with the highest eigenvalue (λ64 = 1.888). Equation (8) (with VA = VB = 512 and

VA×B = 480) predicts λAB = 1.875. The networks shown in this figure are unweighted; different line styles used for the ties are for

illustrative purposes, to highlight the sparse connections between groups in (A) and (B), and within groups in (C) and (D). Figures S2 and

S3 in the supporting material show color versions of this figure with additional eigenvectors of the Laplacian.

two communities. The distribution of payoffs over the network

shows that community structure shields reciprocal altruists from

exploitation by defectors that occur elsewhere in the network

(Fig. 4A). Likewise, community structure concentrates the

deleterious effects of defectors in their own social environment,

such that they ultimately undermine their own future prospects of

receiving help.

Connections between communities may exist at different lev-

els of social organization, and also this has consequences for the

collective yield of altruism (Fig. 3G–I). Panel H shows a network

with random connections within and between clusters of 16 indi-

viduals; each individual has five links with other individuals. In

panel G, the network within each cluster is bipartite, with twice

as many connections as in panel H, but there are only half as

many connections between the clusters. A random walk on the

network of Figure 3G can therefore quickly reach all the indi-

viduals within a cluster, but will jump between clusters with a

low probability. The reverse is true for the network in panel I,

which has twice as many connections between clusters as the one

in panel H, a bipartite structure of connections between clusters,
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and half the number of connections within clusters, creating two

subcommunities of eight individuals within each group of 16. A

random walk on this network is relatively slow to reach all other

individuals within the group, but once it has left the cluster, it

is likely to visit several other distant parts of the network before

returning to its point of origin. A comparison across panels G–I

in Figure 3 shows that the absence of connections at high levels

of social organization has a stronger positive effect on the yield

of altruism than the existence of subcommunities within groups.

Long-distance links that connect individuals across several levels

of social organization dramatically increase the number of indi-

viduals that have an opportunity to exploit an act of altruism. Such

links, which are responsible for the “small-world” phenomenon

observed in various types of networks (Watts and Strogatz 1998),

tend to reduce the yield of altruism and improve the chances of

defectors.

ANALYTICAL RESULTS

The derivation in the supporting information shows formally how

social network structure affects the costs and benefits of gener-

alized reciprocity. Here, we present only the main results of the

analysis. Our analytical results are phrased in terms of the eigen-

values of the normalized Laplacian matrix , a commonly used ma-

trix representation of networks that combines information about

the degree of nodes and their connections with other nodes (Chung

1997). The Laplacian figures prominently in the theory of random

walks on networks (Lovász 1993) and is important in methods to

detect clusters in networks based on spectral graph partitioning

algorithms (Pothen et al. 1990). The eigenvalue spectrum of the

Laplacian contains information about the connectivity of the net-

work, community structure, the average path length, and other

network properties (Chung 1997). The same eigenvalues can also

be related to the collective yield of altruism. For instance, the

average number of return events at low frequencies of reciprocal

altruists is given by

k̄ =
∞∑

�=1

(−1)�+1 f �μ�+1, (5)

where μ� is the �th centralized moment of the distribution of

eigenvalues. These moments have a straightforward interpreta-

tion: it can be shown that (−1)�μ� is equal to the average prob-

ability that a random walk will return to its point of origin after

exactly � steps. For example, μ2 is the probability that an individ-

ual reciprocates to the individual from whom it received help one

step earlier (hence, we will refer to μ2 as the probability of direct

reciprocation). This leads to a simple linear approximation,

Y ≈ f μ2 (6)

for the collective yield at small f . The expansion can be contin-

ued with higher order terms; the second-order term introduces a

dependency on μ3, which is related to the clustering coefficient of

the network. In unweighted networks, μ2 simplifies to the inverse

of the average degree d̄, if the degrees of neighboring nodes are

uncorrelated.

An alternative representation of equation (5),

k̄ = 1

N

N∑
k=1

1 − λk

1 − f (1 − λk)
, (7)

directly relates k̄ and the (ordered) eigenvalues of the Laplacian,

λ1 ≤ λ2 ≤ · · · ≤ λN . Several general properties of the spectrum

of the Laplacian help to interpret this result. The smallest eigen-

value, λ1, is equal to zero. This causes k̄ to diverge as f → 1,

in agreement with the fact that help is transmitted indefinitely

in a population of reciprocal altruists. For connected networks,

the other eigenvalues λk (k = 2 . . . N ) are strictly positive and

not larger than 2. The eigenvectors associated with these eigen-

values can be interpreted as mutually independent partitionings

that each divide the network into two nonoverlapping sets of

nodes. For example, the nodes in the two-community network of

Figure 4 have either a large positive or a large negative weight

in the second eigenvector (Fig. 4B), depending on whether the

node occurs in the upper-right or the lower-left cluster in the

network.

To develop an intuitive interpretation for equation (7), it is

useful to consider a network that is subdivided into two parts, A

and B, with little internal structure (as in Fig. 4). In this idealized

case, the eigenvalue associated with the partitioning (A, B) is

given by

λAB = VA×B

[
1

VA
+ 1

VB

]
, (8)

where VA and VB denote the total number of connections to nodes

in A and B, respectively, and VA×B measures the total number

of links between A and B. Equation (8) reduces to λAB = 1 if

VA×B is equal to its random expectation (i.e., VA×B = VA VB
VA+VB

). In

that case, the partitioning has no effect on the expected number of

return events, as its contribution to the sum in equation (7) van-

ishes. The partitioning has a positive effect on k̄ if its eigenvalue

is less than 1. This requires VA×B < VA VB
VA+VB

, meaning that the

partitioning (A, B) must separate two densely connected groups

of nodes with only sparse connections between these groups

(Fig. 4A,B). The opposite effect can occur as well: the network

exhibits features of a bipartite graph if connections between A and

B are relatively more frequent than connections within A or B

(i.e., VA×B > VA VB
VA+VB

; Fig. 4C,D). The eigenvalue associated with

the partitioning is then bounded by 1 < λAB ≤ 2, resulting in a

negative contribution to the expected number of return events. Un-

like community structure, which helps to contain the detrimental

effects of defectors (Fig. 4A), bipartite structure allows defectors

to exploit cooperators all over the network, thus acting against the
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evolution of generalized reciprocity by effectively equalizing pay-

off differences between network parts with and without defectors

(Fig. 4C).

Social interaction networks observed in animal populations

are different from the idealized example networks of Figure 4

in several respects. First, most realistic networks combine fea-

tures of modularity and bipartiteness, having a spectrum with

some eigenvalues 0 < λk < 1 and others 1 < λk ≤ 2 (in fact, the

mean of the eigenvalues is always equal to 1). However, bipar-

tite structure is typically highly localized in networks that show

evidence of modularity. In the dolphin network, for example, the

distribution of payoffs is almost fully determined by the eigenvec-

tors associated with the smallest and the second smallest nonzero

eigenvalue, which highlight the main structure of the dolphin pop-

ulation (Fig. S4A–C). The eigenvectors associated with the largest

and second largest eigenvalue, by contrast, are concentrated on a

few adjacent nodes on a small bipartite subgraph of the network

(Fig. S4D,E). Second, the eigenvalues λk of realistic networks

are only partially determined by the total number of links within

and between communities. For instance, based on equation (8),

we predict λ2 ≈ 0.09 for the dolphin network, whereas the actual

smallest nonzero eigenvalue of the Laplacian is λ2 ≈ 0.04. This

difference can be fully accounted for by taking into consideration

that network partitionings are often fuzzy, and some nodes may

be some distance away from the cluster boundary (Fig. S4). To ac-

commodate these quantitative refinements, we work directly with

the complete eigenvalue spectrum of the Laplacian to measure

how sparsely communities are connected with one another and to

predict the effects of network structure on the expected number

of return events.

At high values of f , we can improve the accuracy of equa-

tion (7) by taking into account that reciprocal altruist are (slightly)

overrepresented among the neighbors of a reciprocating individ-

ual (see the derivation for the analytical upper bound in the online

supporting information). This is because, most of the time, an

individual that provides help has previously been helped by a

reciprocal altruist in its network neighborhood. With this correc-

tion, the collective yield at small frequencies of defectors can be

approximated as

Y ≈ 1 − (1 − f ) N

T̄
, (9)

where T̄ is the normalized mean access time (i.e., the average

number of steps needed for the random walk to reach a ran-

domly chosen individual relative to the expectation in a fully

connected network; Lovász 1993). As equation (9) applies in

the vicinity of f = 1, this approximation relates the evolution-

ary stability of a population of reciprocal altruists against in-

vasion by defectors to a specific measure of the characteris-

tic distance between nodes. Network modularity increases the

mean access time, consistent with our conclusion that commu-

nity structure supports the evolutionary stability of generalized

reciprocity.

EVALUATION OF EMPIRICAL NETWORK PROPERTIES

We used the analytical approximations for the collective yield

at low and high frequencies of reciprocal altruists to quantify

the variation illustrated in Figure 1 in terms of (1) how strongly

realistic interaction networks support the invasion of generalized

reciprocity, and (2) how well they protect communities of recipro-

cal altruists against exploitation by defectors. Following equations

(6) and (9), we therefore calculated the probability of direct re-

ciprocation, μ2, and the mean access time, T̄ , for each network

in our dataset of animal social interaction networks (Table S1,

Fig. S1). These indicators are interpreted, respectively, as mea-

sures for the likelihood of invasion and the evolutionary stability

of generalized reciprocity.

Observed interaction networks in animal societies differ

widely in their average connectivity, but almost invariably, the

mean access time is much higher than one would expect for ran-

domly connected networks with a similar connectivity (Fig. 5).

This implies that, depending on network connectivity, effective

population size and the ratio between the costs and benefits of co-

operation, it may be more or less likely for reciprocal altruists to

spread in a population of defectors but, in almost all cases, it will

be relatively difficult for defectors to invade when cooperation has

established itself. The high mean access time of real-world inter-

action networks is often caused by the presence of more or less

clearly recognizable subcommunities (e.g., Fig. 1A–C, F–H), but

in some cases it is due to a starlike group structure, where a few

individuals form a densely connected core to which other periph-

eral individuals are connected (Fig. 1J,L). Exceptions to the rule

that the structure of animal social interaction networks supports

the evolution of generalized reciprocity are provided by the three

datapoints in the lower left corner of Figure 5. Two of these, a net-

work of grooming interactions in the collared mangabey (Voelkl

and Kasper 2009; Fig. 1I) and a second association network in

bottlenose dolphins (Wiszniewski et al. 2010; Fig. S1B), are sim-

ilar to a large, well-mixed group (corresponding to the point [0,0]

in Fig. 5), as one would expect. They have a very high connectiv-

ity and show only weak signs of modularity. The other exception

is provided by a roosting network in a colony of Bechstein’s bats

(Kerth et al. 2011). This network also features a high connectiv-

ity but, surprisingly, exhibits a very clear community structure

(Fig. 1E). In this case, the single individual connecting the

two communities has the highest number of connections of

all individuals, which eliminates the barriers that would nor-

mally prevent random walks of reciprocated cooperative in-

teractions to jump from one part of the network to the

other.
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Figure 5. Connectivity and mean access time in real-world ani-

mal social networks. When reciprocal altruists are rare, the chance

of being rewarded for providing help is proportional to the prob-

ability of direct reciprocation μ2 (eq. 6). Accordingly, μ2 quanti-

fies the effect of network structure on the probability of invasion

of generalized reciprocity. The mean access time T̄ determines

the success of defectors in a population of reciprocal altruists

(eq. 9). This quantity provides a measure of the extent to which

network structure supports the persistence of cooperation. Values

of μ2 and T̄ were calculated for a set of 19 vertebrate social in-

teraction networks collected from the literature (not all of these

are represented in Figure 1; see Table S1 and Figure S1 for litera-

ture references, additional spectral properties, and visualizations

of the networks). For most networks, the mean access time is

higher than one would expect for a random network with a simi-

lar connectivity (small dots indicate reference values of μ2 and ln T̄

for large Erdős–Rényi random graphs with varying mean degrees;

the dashed line shows the analytical prediction for such graphs

at high connectivity; see the methods in the online supporting

information).

Discussion
Our analysis shows that generalized reciprocity can evolve in pop-

ulations with varying types of interaction networks, provided that

cooperation increases the mean fitness of the interacting individ-

uals (b > c). The initial invasion of generalized reciprocity in a

population of defectors is opposed by selection, at least, if re-

ciprocal altruists are more likely than defectors to spontaneously

initiate cooperation. However, if this is not the case or if individ-

uals only rarely provide help spontaneously, it is conceivable that

mutation or gene flow, in combination with genetic drift, can cause

the frequency of reciprocal altruists to rise above a critical level

beyond which selection can favor the further spread of coopera-

tion. Because generalized reciprocity is a conditional strategy, the

expression of cooperative acts by reciprocal altruists is dependent

on the presence of other cooperators. As a result, the observed

rate of cooperative interactions increases sharply as generalized

reciprocity nears fixation. This effect generates strong selection

against defectors in populations that mainly consist of reciprocal

altruists (Fig. 2C), effectively stabilizing such populations against

the invasion of defectors (Fig. 2B).

The structural properties of the social network have a strong

effect on both the initial spread of generalized reciprocity and its

evolutionary stability. At low frequencies of reciprocal altruists,

the yield of altruism is equal to the probability of direct recipro-

cation. Accordingly, the invasion of generalized reciprocity is fa-

cilitated in sparse networks where individuals interact frequently

with a small number of social partners. This result is reminiscent

of group size effects on the evolution of generalized reciprocity in

well-mixed small social groups (Pfeiffer et al. 2005) and consis-

tent with simulations comparing different cooperation strategies

in heterogeneous contact networks (Iwagami and Masuda 2010).

Low average network degree might also be viewed as an indicator

of population viscosity, which has been shown to have signif-

icant effects on the occurrence and persistence of generalized

reciprocity (Rankin and Taborsky 2009).

The yield of altruism is closely related to the mean access

time (i.e., the mean number of steps needed for a random walk

on the network to reach a randomly chosen individual) in popula-

tions that contain few defectors. Given that the mean access time

is higher in networks that consist of sparsely interconnected com-

munities, network modularity strongly supports the evolutionary

stability of generalized reciprocity. Modularity is an important

feature of many networks (Girvan and Newman 2002), including

most of the animal social networks that we have analyzed. Group

structure helps to contain the detrimental effects of defectors in

their own social neighborhood, partially protecting reciprocal al-

truists elsewhere in the network from being exploited. A similar

mechanism has been found to operate in a model were the deci-

sions to cooperate and to disperse can evolve jointly (Hamilton and

Taborsky 2005). In this case, groups of more and less-cooperative

individuals arise, which introduces scope for between-group se-

lection to act against defectors.

Our model provides an example of a mechanism by which

conditional behavior can create differences between the inter-

action environments of cooperators and defectors. A reciprocal

altruist induces other reciprocal altruists in its social environment

to provide help, whereas a defector does not have such an effect.

This difference results in positive assortment between altruists

and the helping behaviors of others with whom they interact, sat-

isfying a fundamental necessary condition for the evolution of

altruism (Fletcher and Doebeli 2009). From this perspective, the
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collective yield of altruism can be interpreted as a measure of

the extent to which cooperators are capable of modifying their

own interaction environment, highlighting network structure as a

factor that quantitatively determines the degree of assortment be-

tween an individual’s genotype and the amount of help it receives

from others.

In this study, we have treated the social network as an exter-

nally imposed feature of the population that has arisen indepen-

dently of the context of cooperation. This applies, for example,

when attributes of the environment induce individuals to assort, ei-

ther passively (e.g., by wind or water movement) or actively (e.g.,

in response to differences in food abundance, light, or temper-

ature). Alternatively, heterogeneous networks may be structured

by individual characteristics such as size, sex, age, condition,

personality, and other properties that may not be obviously re-

lated to cooperative tendencies (Berman 1982; McPherson et al.

2001; Ruckstuhl 2007; Pike et al. 2008; Pinter-Wollman et al.

2009; Schürch et al. 2010). In other cases, however, animal so-

cial networks may have been directly shaped by the cooperative

interactions that take place among their members. For instance,

individual differences in cooperativeness may underlie behavioral

assortment (Croft et al. 2009), or individuals may actively shape

their personal social network to maximize the net benefit of co-

operation (Hauert et al. 2002; Santos et al. 2006; Cao et al. 2011).

Cooperative behaviors are frequent in the social species that have

been subject to social network analysis, and it is not clear whether

the observed properties of animal social networks are affected

by this bias. One way to disentangle the interplay between the

evolution of cooperation and the structure of social networks is

to study theoretical models that allow cooperative behavior to

coevolve with decision rule that govern the maintenance and es-

tablishment of network ties (Santos et al. 2006; Cao et al. 2011).

Such models can clarify whether adaptive networking strategies

lead to networks that are conducive to the evolution of cooper-

ation. However, a major challenge for this approach is that the

space of potential networking strategies is enormous, and it is

not obvious which part of this strategy space might be accessi-

ble to animals with cognitive constraints and limited abilities to

predict or observe the fitness consequences of the various options

to build, maintain, or break social ties. Empirical studies on the

development of social networks in animals are therefore essen-

tial to motivate minimal mechanistic models of strategic network

formation, but, presently, such studies are scarce.

Another aspect that can be considered once more detailed

social network data become available is that interaction structures

are often dynamic. We expect that temporal variability would

matter for the quantitative predictions of our model, if changes in

network structure occur on a timescale comparable to the mean

access time. In practice, there is a trade-off between the ability

to resolve details of an individual’s network neighborhood and

the temporal resolution of the inferred social structure. Animal

social networks are thus often reconstructed from observations

of individual interactions collected over an extended period of

time (Croft et al. 2008). As a consequence, relevant temporal

variability may have been averaged out in some of the empirical

networks that we have analyzed, particularly those that are based

on long-term association data (e.g., Lusseau 2003; Wiszniewski

et al. 2010; Kerth et al. 2011). If this is indeed the case, interpreting

these networks as snapshots of the social structure at a certain

moment in time will have caused us to overestimate the number of

potential interaction partners available to an individual at a given

point in time, and underestimate the extent to which the population

is subdivided into smaller communities. We note, however, that

correcting for these biases would only reinforce the pattern shown

in Figure 5.

Relatedness has an important effect on interaction patterns

in many social species (Wolf and Trillmich 2008; Wey and

Blumenstein 2010; Wiszniewski et al. 2010; Wolf et al. 2011). We

have deliberately ignored kin structure in our study, to evaluate

the impact of network properties on the propagation of general-

ized reciprocity separate from kin selection effects mediated by

network reciprocity (Nowak 2006; Ohtsuki et al. 2006; Ohtsuki

and Nowak 2007; Taylor et al. 2007). A recent simulation study

(Iwagami and Masuda 2010) demonstrates that network reci-

procity can support the evolution of generalized reciprocity in het-

erogeneous, scale-free networks. Scale-free networks (Barabási

and Albert 1999) contain a small number of highly connected

nodes (hubs) that offer the possibility to reach otherwise distant

parts of the network in a small number of steps. As this so-called

“small-world” property (Watts and Strogatz 1998) dramatically

reduces the mean access time (Pandit and Amritkar 2001), our

analysis predicts that scale-free social networks are not conducive

to the evolution of generalized reciprocity (see also Fig. 3G–I).

Nevertheless, if offspring disperse locally on the network, recip-

rocal altruists can persist and spread in scale-free networks if they

manage to occupy some of the hubs and their surrounding nodes

(Iwagami and Masuda 2010). The interaction between kin selec-

tion and network effects on the patterns of social information flow

(central to this article) deserves further attention. Nevertheless, it

is likely that the establishment of clusters of cooperators will also

support the evolution of generalized reciprocity in networks with

community structure like the ones we see in animal societies.

There are thus several reasons to expect that the evolution of co-

operation in animals is easier than theoretical models of idealized,

well-mixed populations appear to suggest.
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