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Abstract

When individuals exchange helpful acts reciprocally, increasing the benefit of the receiver

can enhance its propensity to return a favour, as pay-offs are typically correlated in iterated

interactions. Therefore, reciprocally cooperating animals should consider the relative benefit

for the receiver when deciding to help a conspecific. Norway rats (Rattus norvegicus)

exchange food reciprocally and thereby take into account both the cost of helping and the

potential benefit to the receiver. By using a variant of the sequential iterated prisoner’s

dilemma paradigm, we show that rats may determine the need of another individual by olfac-

tory cues alone. In an experimental food-exchange task, test subjects were provided with

odour cues from hungry or satiated conspecifics located in a different room. Our results

show that wild-type Norway rats provide help to a stooge quicker when they receive odour

cues from a hungry rather than from a satiated conspecific. Using chemical analysis by gas

chromatography-mass spectrometry (GC-MS), we identify seven volatile organic com-

pounds that differ in their abundance between hungry and satiated rats. Combined, this

“smell of hunger” can apparently serve as a reliable cue of need in reciprocal cooperation,

which supports the hypothesis of honest signalling.

Introduction

Reciprocal cooperation among unrelated individuals is widespread in animals (for a review

including 79 vertebrate species, see the work by Taborsky and colleagues [1]). Theoretical

models include both the costs to the donor and the benefit for the receiver as important

parameters for the evolution of cooperative behaviour [2–4]. The propensity of an animal to

cooperate with a conspecific should thus increase when the benefit for the partner is high,

while the costs for the helpful individual are low [5]. Animals show need, for instance, for

food, by solicitation, which increases the propensity to receive help [6]. Solicitation, for exam-

ple, by begging behaviour of young vertebrates, frequently involves costly auditory and visual

signals [7]. When adult animals cooperate, for example, when individuals are close to a desir-

able resource but unable to access it, prospective recipients may demonstrate their motivation
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to get the resource by reaching towards it or by vocalizing (for example, the work by Schwein-

furth and Taborsky, the work by Burkart and colleagues, the work by Cronin and colleagues,

the work by Yamamoto and colleagues, and the work by Melis and colleagues [6,8–11]). How-

ever, vocalisation and gestures may not necessarily reflect the relative need of the recipient

honestly but might instead be used to manipulate a potential donor into helping, for example,

by attempting to attract attention of the conspecific [11], threaten it [12], or pretend unwar-

ranted need [13], which may reflect dishonesty [14,15] (see the work by Riehl and Frederick-

son [16] for review). Here, we use wild-type Norway rats (Rattus norvegicus) to investigate

odour as potentially honest, uncheatable cue for prospective donors to assess the need for food

of a conspecific.

Norway rats show both direct and generalised reciprocity in an instrumental reciprocal

task, in which one individual can pull food for its partner [12,13,17–19]. Thereby, rats are sen-

sitive to the quality of help they received [18], and they accept higher costs when providing

food to a hungry partner in weak condition than to a well-fed one [13]. When rats are able to

donate food to a partner in an experimental task, prospective receivers show solicitation

behaviours, including reaching toward the desired food, calling in the ultrasonic frequency

range, and trying to catch the attention of the donor [6]. These behaviours increase the part-

ner’s propensity to help. It is yet unclear, however, which information is actually transmitted

and which sensory modalities are involved in this communication. Furthermore, these signals

might be prone to manipulation, that is, to dishonestly feigning urgent need. In order to assess

the true need of another individual, a potential donor should only rely on cues that are honest,

either because they cannot be easily manipulated or are costly to produce [5,20]. In nocturnal

social species such as Norway rats, visual signals are of minor importance and thus should be

replaced by other cues [12]. If food is the desired resource, olfaction is a sensory modality that

might provide reliable information about the need of an individual. Uncheatable information

may be transmitted via inadvertent odour cues resulting from the condition of an animal, for

example, its current nutritional state. In rats, carbon disulfide from the breath of conspecifics

plays a role in diet choice [21], with rats preferring novel food that has previously been fed on

by other rats [22].

Based on this argument, we hypothesised that rats can distinguish between hungry and sati-

ated conspecifics solely by means of odour cues and that they adjust their amount of help

toward them accordingly. We used a setup where focal rats could pull food for a stooge in an

adjacent compartment while being provided with odour cues from a hungry or satiated rat

located in a different room. Thereby, visual and acoustic stimuli from the rat providing odour

cues were excluded.

Results and discussion

Response to olfactory cues

The experimental setup was adapted from previous experiments on reciprocal food exchange

in rats [13,18,19] (Fig 1). A wire mesh divided the test cage (80 cm × 50 cm × 37.5 cm), with

one compartment used for the focal rat and the other one for its experimental partner. A mov-

able tray was installed in front of the cage, which could be pulled towards the cage by an

attached stick accessible only to one of the two rats. A food reward was placed on the other

side of the tray, so that it could be reached only by the experimental partner of the pulling rat,

that is, the receiver. Thus, rats could not pull food for themselves but only for their respective

partner. Pulling the tray towards the partner is costly for the focal subject, and it has been

shown that they take these costs into account when deciding to donate food to a partner [13].

Experimental dyads consisted of unrelated and unfamiliar females. The 20 focal rats used in
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this experiment had all been made acquainted with reciprocal cooperation and were familiar

with the setup (cf., the work by Rutte and Taborsky [17]). Furthermore, we used four rats that

were specifically trained to always pull as cooperative partners of the focal test subjects (experi-

mentally assigned ‘cooperators’).

In order to block information transfer between the experimental rats in the adjacent com-

partments of the test cage, the partner of the focal rat (‘cooperator A’) was placed in a clear

Plexiglas box (38 cm × 48 cm × 36 cm) from which a pump sucked out the air and blew it out-

side of the room. Hence the focal rat was unable to smell the partner in the neighbouring com-

partment. The air pump created noise in the audible and ultrasonic acoustic ranges of rats,

thereby impeding acoustical communication, which was further hampered by the fact that the

partner was contained in a sealed Plexiglas box [23]. We furthermore covered the side of the

partner rat’s box adjacent to the compartment of the focal individual with opaque foil so that

the rats could not see each other.

In the experience phase (Fig 1A), the partner (‘cooperator A’) pulled food for the focal rat

during 7 minutes. We noted the latency until the first pulling, as well as the number of pulls.

During this experience phase, the focal rat did not receive chemical information from its pull-

ing partner in the neighbouring Plexiglas box but instead was provided with odour from a sim-

ilar box located in a different room, which contained a second (satiated) rat (‘B’). On the next

day, during the test phase (Fig 1B), the focal rat was enabled to reciprocate the help received

on the previous day to ‘cooperator A’ while receiving odour from rat ‘B’ in the neighbouring

room. Rat ‘B’ had been either food deprived (hungry) or not (satiated) overnight. The experi-

ence and test phases were repeated once with opposite hunger states of the individual (B) from

which the odour was presented to the focal rat in the test phase. The partners as well as the

Fig 1. Experimental setup. (a) During the experience phase a cooperative partner (A) placed in a Plexiglas box in the

neighbouring compartment of the focal rat (F) produced food for the latter by pulling a stick attached to a tray

containing a food reward. The air of the Plexiglas box of cooperator A was removed from the experimental room by a

pump (depicted by outgoing arrow). A second individual (B) was placed in a similar box in a different room, and the

air from this box was pumped into the compartment of the focal rat (depicted by ingoing arrow). Individual B was

satiated during this experience phase. (b) Experimental setup of the test phase. The focal rat now had the opportunity

to reciprocate the help it had received during the experience phase by pulling food for the partner in the adjacent

Plexiglass box, while receiving odour from a hungry or satiated individual (B) located in a Plexiglas box in another

room. The arrows depict air flow as in panel (a).

https://doi.org/10.1371/journal.pbio.3000628.g001
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sequence in which the focal rat received odour from hungry or satiated individuals were ran-

domised. In the test phase, hungry partners were only presented in the morning because of

ethical reasons, in order to avoid suffering from prolonged food restriction.

Focal rats started to pull earlier for the stooge if they received odour from a hungry rather

than from a satiated rat (X2 = 413.5; p< 0.001; mean latencies for hungry rats: 29 s; for satiated

rats: 85 s; N = 16; Fig 2), even when excluding the outlier (X2 = 191.93; p< 0.001; mean laten-

cies for hungry rats: 29 s; for satiated rats: 63 s; N = 15; outlier defined as value exceeding mean

+ (SD × 2)), suggesting that they assess the hunger status of a partner using olfactory cues

alone. An enhanced propensity to donate food to hungry as compared with satiated partners

has been identified also in previous studies using the same setup, in which the hungry or sati-

ated partners were located in the same cage as the test subject [6,13]. One might argue that

olfactory cues emitted by hungry rats could lead to increased general agitation by the focal rat,

thereby resulting in higher activity and consequently earlier pulling. However, rats also pull

earlier for cooperative than for defective partners [12,13,17,19,24], and the latency to pull cor-

relates negatively with pulling frequency, suggesting that this latency indeed represents the

helping motivation of the focal subjects [6,18].

Fig 2. Latency to the start of food provisioning of test rats for a stooge in the neighbouring compartment when

receiving odour from a hungry or a satiated conspecific located in a different room (for raw data, see S1 Data).

Boxes mark medians (bold line), means (dashed line), and interquartile ranges of the data. The asteriks indicate a

significant difference at p< 0.001.

https://doi.org/10.1371/journal.pbio.3000628.g002
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In a previous study, in which focal rats had full access to all cues provided by the partner

(visual, olfactory, and acoustic), the mean latency to pull was 196 s for hungry and 183 s for sati-

ated rats [13]. Thus, in the current experiment, in which focal subjects received olfactory cues

alone, they started to pull much earlier, and they differed in their latency to pull depending on the

hunger state of the receiver. Confining the information received to one modality, olfaction, appar-

ently triggered an earlier response. The lack of pronounced latency differences between pulling

for hungry and satiated rats in the previous study, in which the partner was physically present

nearby, might indicate that the behaviour of the partner can influence the decision of the focal rat,

which has been shown to occur in a previous experiment [6]. We should like to stress that the pre-

vious data were obtained with a different batch of rats, and thus the absolute latency and number

of pulls may not be directly comparable between experiments because of potential differences

between populations (for example, in the general motivation and/or ability to pull).

The mean numbers of pulls by focal rats appeared to be higher when receiving odour from

a hungry than from a satiated partner, but this was not significant, and thus there was no evi-

dence that this difference was meaningful (X2 = 1.62; p = 0.20; mean number of pulls per 7

minutes for hungry rats: 7.56; for satiated rats: 6.37; N = 16). In a previous study in which the

partner was physically present nearby and no sensory modality was excluded, body mass of the

partners in connection with their hunger state played a crucial role in the decision of the focal

rat on how much food to provide. When the receiver was hungry, focal rats pulled more often

for light than for heavy partners. In contrast, when the receiver was satiated, focal rats pulled

more often for heavy than for the light partners. As weight reflects dominance in rats [25],

heavier partners may generally more readily receive food donations from focal rats simply

because of dominance effects [26]. As the rats in our study were all of similar body weight,

dominance can be ruled out as potential explanatory factor for our results.

The latencies until the first pull for the focal rat that the ‘cooperator A’ had shown on the

experience day and that of the focal rat pulling for the stooge on the test day were not corre-

lated with each other (rho = 0.027; p = 0.85) nor were their numbers of pulls (rho = 0.035;

p = 0.89). This indicates that the test subjects did not merely copy the behaviour of their part-

ner [23]. During the experience phase, experimental partners pulled earlier and more often for

focal rats in the afternoon than in the morning (latency: X2 = 67.46; p< 0.001; number of

pulls: X2 = 19.68; p< 0.001; N = 16), revealing an increase in the motivation of rats to donate

food during the course of the day. This contrasts with the behaviour of the focal rats on respec-

tive test days; they showed shorter latencies before starting to pull for their partners in the

morning (for hungry partners) than in the afternoon (for satiated partners; see above results).

Thus, the discrimination between pulling for hungry and satiated partners might be even

stronger than observed considering the apparently increasing motivation of rats to pull during

the course of the day. Furthermore, we tested for a potential sequence effect by comparing for

each individual the number of pulls and the latency to pull between the two test days, which

did not reveal a significant effect (paired Wilcoxon signed rank test; number of pulls: V = 99.5;

p = 0.110; latency: V = 50.5; p = 0.379).

A previous study of Norway rats showed that they reciprocate help according to the quality

of help they previously received [18], indicating that the specific outcome of a helpful act for

the receiver can subsequently benefit the donor. In our study, rats provided food faster when

the partner was hungry than when it was satiated. ‘Gratitude’ is often argued to play a key role

in the evolution of social behaviour in humans, with individuals being more willing to help

somebody else if they are grateful for the help they have previously obtained [27]. If individuals

reward cooperative conspecifics according to their perceived benefit of previously received

help, assessment of the need of the partner might critically affect the probability to get help

back in a future interaction.
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In our experiment, the rat from which the odour derived was separated from the experi-

mental room and placed in a box alone. Hence, the information transferred by the odour was

not socially induced. Therefore, rats seem to use the partner’s inadvertent smell of hunger as a

reliable indicator for its current need, adjusting their helping propensity accordingly. This sup-

ports the ‘index hypothesis’ of honest signalling, which assumes that honesty is enforced

because of physical, developmental, or physiological constraints that cannot be cheated [5,20].

Odour components

Our experimental results above suggested that distinct volatile organic compounds (VOCs) might

differ between hungry and satiated rats. We thus analysed olfactory samples taken from hungry

and satiated rats for within-individual comparison of emitted volatile olfactory compounds.

For this experiment, a hungry or satiated rat was individually placed in a Plexiglas box from

which the air was sucked out with a vacuum pump (Intex1110 quick fill, 400 L/min). This air

was trapped in an adsorbent filter, which was later analysed using a gas chromatography sys-

tem coupled with a mass spectrometer (see Methods). A principal component analysis (PCA)

of 27 biologically relevant volatile olfactory compounds identified in the air collected from the

experimental rats’ box revealed that the olfactory profiles cluster according to the hungers sta-

tus of the individuals (Fig 3A). Significance of the model has been assessed using both good-

ness of fit (R2 = 0.665) and goodness of prediction (Q2 = 0.267) parameters. Seven compounds

were significantly different between hungry and satiated rats (N = 10; Table 1; Q2 = 0.369; Fig

3B; S1 Fig): propanoic acid, butanoic acid, butyl acetate, 3-methylbutanoic acid, pentanoic

acid, 2-heptanone, and dimethyl sulfone. Notably, butyl acetate and butanoic acid were present

only in hungry rats, whereas pentanoic acid was detected only in satiated individuals.

Propanoic and butanoic acid quantities were higher in satiated than in hungry rats. These

organic compounds are biosynthesised in the large intestines by bacterial fermentation of die-

tary fibre [28]. Similarly, the dimethyl sulfone amount was higher in satiated than in hungry

rats, which is a metabolite of dimethyl sulfoxide that is found in many foods, including grains

and raw vegetables, both of which are regularly fed to our rats [29]. As hungry rats did not

have access to food for 16 h, this fasting condition may have been reflected by their low abun-

dance of dimethyl sulfone. Thus, low emanation of these 3 substances in hungry rats may be

directly linked to reduced access, intake, and digestion of food and therefore serve as reliable

indicators of hunger. 2-Heptanone, which occurs in certain foods as well, was also more abun-

dant in the odour of satiated than hungry rats. This organic compound is contained in high

concentration also in the urine of physically stressed rats, potentially serving as alarm cue for

conspecifics [30]. However, the 2-heptanone amount was lower in hungry than in satiated

rats; hence, in our satiated rats, the quantity of this substance may have indicated a relatively

high metabolic activity rather than stress, which should have reached higher levels when the

rats were hungry.

Of highest significance may have been the 3 substances that were present only either in

samples from hungry or satiated rats. Pentanoic (or valeric) acid that was detected only in sati-

ated individuals is a carboxylic acid produced by gut bacteria in the colon of rats [31]. Thus,

this substance may be directly connected to metabolic activity. In contrast, butyl acetate and

3-methylbutanoic acid were present only in the odour of hungry rats. Butyl acetate can be

found in fruits such as apples but also in building material such as wood. As the rats did not

receive fruits during our experiment, it is possible that the hungry rats might have gnawed on

the wooden enrichment in their home cages during the food restriction. Interestingly,

3-methylbutanoic acid is part of the female pheromone blend of rats [32], the specific func-

tions of which in rat communication are hitherto unknown, however. Future research might
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Fig 3. Principal component analysis of 27 biologically relevant olfactory compounds (a) and the 7 significantly different

compounds (b) in the odour of hungry (orange/light) and satiated (purple/dark) rats (for raw data, see S2 Data). Ellipses

PLOS BIOLOGY Food provisioning based on odour cues in rats

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000628 March 24, 2020 7 / 13

https://doi.org/10.1371/journal.pbio.3000628


clarify what information is precisely transferred by the release of 3-methylbutanoic acid that

could be responsible for the increased helpfulness of conspecifics.

Implications

Our results show that Norway rats adjust their propensity to help to the current need of a part-

ner, apparently using olfactory cues either resulting directly from recently ingested food

sources, from metabolic processes involved in digestion, or from a putative pheromone indi-

cating hunger. It is likely that these cues cannot be cheated, thereby providing reliable infor-

mation about one’s need for potential donors [5,20]. This may illustrate a simple mechanism

mark Hotelling’s T2 (95%). Dots are marked with individual IDs, with individuals with the same letter in the name being

housed in the same group, and the numbers behind underscores depicting the sample sequence (_1 or _2).

https://doi.org/10.1371/journal.pbio.3000628.g003

Table 1. Twenty-seven biologically relevant volatile organic compounds in rat odour. Given are retention times (RT), mean relative abundance (a compound’s peak

area in chromatographic profile) for hungry and satiated rats, the mean difference in abundance, and test statistics for each compound using 5,000 permutations and Bon-

ferroni correction for multiple testing. Substances that differed significantly in their abundance between hungry and satiated rats are marked in grey. Formally identified

compounds are marked in bold.

Compound RT Mean abundance F p
Hungry rats Satiated rats Difference

Acetic acid 1.720 6,335,471 5,882,134.6 453,336.4 0.151 0.712

Propanoic acid 2.250 1,319,250.1 2,182,683.6 −863,433.5 12.57 <0.001

Butanoic acid 3.150 1,580,599.8 2,460,690.3 −880,090.5 11.60 0.002

Hexanal 3.231 1,167,781 1,068,713.778 99,067.22222 2.16 0.176

Butyl acetate 3.451 380,427.8889 0 380,427.8889 46.77 <0.001

3-Methylbutanoic acid 3.904 187,862 0 187,862 11.67 0.009

Pentanoic acid 4.671 0 382,177 −382,177 16.22 <0.001

2-Heptanone 4.830 585,068.25 1,322,360.1 −737,291.85 16.21 <0.001

Heptanal 5.047 2,643,706 3,434,022.9 −790,316.9 0.752 0.401

Dimethyl sulfone 5.493 693,179.8 1,674,063.1 −980,883.3 20.44 <0.001

Hexanoic acid 6.895 1,344,355.4 1,581,008.6 −236,653.2 0.619 0.437

5-Hepten-2-one, 6-methyl- 7.070 5,212,116.75 4,861,344.667 350,772.0833 0.465 0.503

Octanal 7.474 673,047 653,348 19,699 0.107 0.758

3-Carene 7.656 844,680.75 424,704.4444 419,976.3056 4.16 0.057

2-Hexanone, 3-methyl- 8.199 1,260,886.714 982,749.625 278,137.0893 0.117 0.740

Benzoic acid, 4-methyl-, 2-hydroxy-2-phenylpropyl ester 9.678 558,842.625 459,576.6667 99,265.95833 0.093 0.764

2-Penten-1-ol 9.876 1,277,454.5 1,003,322 274,132.5 3.65 0.069

Nonanal 10.196 2,576,800.7 3,278,869.1 −702,068.4 0.740 0.400

Dodecane 12.824 759,666.7 620,910.75 138,755.95 3.32 0.085

Decanal 12.986 1,623,969.6 1,843,755.2 −219,785.6 0.207 0.647

Butanoic acid, 3 hydroxy-3-methyl 14.000 543,081.625 464,247.5556 78,834.06944 0.025 0.875

Tetradecane 18.116 1,399,337.8 1,205,279.5 194,058.3 1.50 0.225

Caryophyllene 18.654 868,109.8333 788,356.25 79,753.58333 1.11 0.270

5,9 Undecadien-2-one, 6,10-dimethyl-(E) 19.452 2,431,564.5 2,483,257.167 -51,692.66667 0.751 0.380

Nonadecane 22.923 1,938,723.1 1,841,207.8 97,515.3 0.120 0.734

n-Hexadecanoic acid 32.222 4,400,507.625 4,111,716.111 288,791.5139 0.020 0.884

Octadecanoic acid 37.860 1,888,030.429 1,860,893.222 27,137.20635 0.419 0.525

Abbreviations: RT, retention times

https://doi.org/10.1371/journal.pbio.3000628.t001
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by which individuals can make adaptive social decisions if their interests are correlated

through iterated interactions [1].

Norway rats are not the only species where unrelated individuals share food with each

other reciprocally. In the common vampire bat (Desmodus rotundus), conspecifics regurgitate

blood for individuals that hunted unsuccessfully, thus saving them from starvation [33]. A

recent study suggesting that in these exchanges the bats apply decision rules of direct or gener-

alized reciprocity [34] showed that food sharing was preceded by allogrooming and sniffing,

which might indicate that odour plays an important role in decision making also in this species

[35]. Olfactory cues may potentially inform the donor about whether the receiver has been

hunting successfully or not. Furthermore, odour might be used also as a signal when needing

help in a cooperative task, as has been suggested for elephants [36]. In any case, odour could

provide important information to assess the need of a partner for help in many species show-

ing food provisioning. In primates, including humans, in which food sharing amongst unre-

lated individuals is common (reviewed in the works by Jaeggi and Gurven [37,38]), odour is

unlikely to serve as a cue for need, because visual and acoustic cues are ecologically more rele-

vant for this order. The relative amount of food shared is usually correlated with the number

of consumers within the recipient family. In humans, it is higher for young and old than for

middle-aged individuals, with food items having a higher relative caloric value to these

favoured receivers [39]. This might have long-term benefits for the donor as well, because in a

species showing reciprocal cooperation, generous individuals can rely on receiving help back

when being in need themselves [40], especially if the conflict of interest is low [6]. In humans,

the control of reciprocal cooperation may involve social norms and their implementation,

which can be based on uncheatable cues of need and may include punishment of cheaters [39].

Methods

Ethic statement

Housing of the animals and the experimental procedure were authorised by the Swiss Federal

Veterinary Office (licence no. BE25/14) in accordance with the animal welfare regulations of

Switzerland (Tierschutzverordnung Schweiz 04/2008).

Experimental subjects and housing

Female wild-type Norway rats (Rattus norvegicus; source: Animal Physiology Department,

University of Groningen, the Netherlands) were housed in groups of 5 sisters each in environ-

mentally enriched cages (80 cm × 50 cm × 37.5 cm; in accordance with animal welfare legisla-

tion of Switzerland [41]), with commercial rat pellets and water provided ad libitum. Housing

room conditions were held constant at 20˚C ± 1˚C and 45% to 55% humidity under a 12:12 h

light-dark cycle with lights on at 8 p.m. We performed experiments during the dark phase

under red light, because rats are primarily nocturnal and lack receptors for red light. All rats

were individually marked and used to frequent handling to ensure that they were not stressed

during the experiment [6,12,13,17–19]. During the experiment, the latency until the first pull-

ing was used as the critical response variable, because this is a continuous variable containing

more information than the integer pulling frequency, and it has been shown to be a reliable

indicator for the rats’ motivation to help [6,18].

Chemical analyses

Before taking an odour sample, the Plexiglas box was cleaned with ethanol and the hungry or

satiated rat placed in the box. Then, an adsorbent tube filled with 70 to 75 mg Tenax-TA
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porous polymer (Gerstel GmBH) was fixed about 15 cm above the animal. A 5-min collection

period was used to trap the emitted volatiles by connecting the adsorbent tube to a diaphragm

vacuum pump with a flexible hose (Vacuubrand GmBH, 3,000 mL/min suction flow). After-

wards, the filters were stored in individual 8-mL amber glass vials hermetically closed and kept

at 10˚C before being analysed on the same day.

A gas chromatography system (GC, Agilent 7890a) coupled with a mass spectrometer

detector (MSD, Agilent 5975c) was used for identification and relative quantification of the

volatile compounds released by hungry or satiated rats. Tenax filters were desorbed in a ther-

mal desorption unit initially at 40˚C (held for 0.5 min), then ramped 60˚C/min until 250˚C

(hold time 3 min). During this step, all the compounds were cryofocused with liquid nitrogen

in a cooled injection system (−80˚C, held for 8 min) before being released (12˚C/min ramp,

280˚C final temperature). A PTV inlet was used in solvent vent mode for injection (pressure

14 psi = 96.5 kPa, total flow 51.52 mL/min). Compounds were separated on an Agilent

HP5-MS column (30 m length × 0.25 mm i.d., and 0.25 μm film thickness) undergoing an ini-

tial 50˚C (1 min), then a first ramp of 5˚C/min until 160˚C, a second of 3˚C/min to 200˚C,

and finally raised 100˚C/min until 250˚C (hold time 3 min). Helium was used as carrier gas, at

a 1.65 mL/min flow rate (constant flow mode). A 2 min post run at 260˚C was performed

between each sample. The MSD transfer line was set at 280˚C. In the MS detector, an electron

impact mode (70 eV) and a scanning over de mass range of 33 to 300 were used. Correspond-

ing blank (empty glass tube) and controls (odours collected in empty cages, one per sampling

day) were carried out in order to determine which of the compounds were not of rat origin.

No exact quantification (internal standard or calibration curve) was undertaken in this study.

All chromatographic profiles were manually processed in order to exclude likely contami-

nants and irrelevant volatiles. Preliminary identifications of the VOCs were based on NIST11

mass spectral library as well as PBM library search (U.S. Department of Commerce and Agi-

lent Technologies, Inc.). Using SciFinder1, 27 obvious and biologically relevant VOCs were

selected for further statistical analysis. Auto-integrations were carried out to obtain relative

abundances in all chromatograms. In order to confirm the identities of each of the 18 main

compounds, we analyzed pure standards (Merck—Sigma-Aldrich, KGaA) for each of them

with the exact same analytical procedure. In all cases, retention times and mass spectra com-

parisons confirmed their initial identifications (see Table 1), including all of the 7 volatile com-

ponents that significantly differ between hungry and satiated rats.

Statistical analyses

We analysed the pulling behaviour of the focal rat with generalised linear mixed models

(GLMM) using R statistical software (version 3.1.3; http://www.r-project.org) and the package

‘lme4’. We tested for the effect of the hunger status of the partner from which the focal rat per-

ceived the odour on the latency to the first pull and the number of pulls using GLMMs with

Poisson distributions and comparing them to null-models. The identities of (i) the focal rat,

(ii) the cooperative partner in the adjacent compartment, and (iii) the rat in the neighbouring

room from which the odour derived were included as random factors. In order to exclude a

sequence effect as potential confounding factor, we tested whether the motivation to perform

the pulling tasks differs between morning and afternoon, using data obtained from coopera-

tors during the experience phase. We performed GLMMs using time of the day as explanatory

variable as well as cooperator identity as random factor to explain the latency until the first

pull and the number of pulls during 7 min. Additionally, we tested if the latency and number

of pulls of the focal rats correlated with the previous performance of the cooperator during the

experience phase using Spearman rank correlation tests.
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Based on their relative abundances, a PCA was carried out on the 27 biological relevant

VOCs. Using Simca 13.0 software (Umetrics, Sartorius Stedim Biotech, Sweden), the data were

converted into visual information for interpretation. Furthermore, relative abundances of the

identified substances were compared between hungry and satiated rats using a linear model.

Most of the data failed the assumptions of normality and equality of variances, thus the F-val-

ues were obtained from the original model whereas p-values were obtained by 5,000 permuta-

tions (see S1 Script for the R script). A Bonferroni p-value adjustment method was applied to

account for multiple testing.

Supporting information

S1 Fig. Sums of VOCs collected from either hungry (white) and satiated (black) rats (for

raw data see S2 Data). Relative abundance is measured in number of ions. Significant differ-

ences are marked with an asterisk. VOC, volatile organic compound

(PDF)

S1 Data. Raw data of rat performance.

(XLSX)

S2 Data. Raw data of GCMS output. GCMS, gas chromatography–mass spectrometry

(XLSX)

S1 Script. R Script to obtain p-values for the differences in relative substance abundance

between hungry and satiated rats.

(TXT)
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28. Levrat MA, Rémésy C, Demigné C. High propionic acid fermentations and mineral accumulation in the

cecum of rats adapted to different levels of inulin. The Journal of Nutrition 1991; 121: 1730 https://doi.

org/10.1093/jn/121.11.1730 PMID: 1941180

29. Horvath K, Noker PE, Somfai-Relle S, Glavits R, Financsek I, Schauss AG. Toxicity of methylsulfonyl-

methane in rats. Food and Chemical Toxicology 2002; 40: 1459–1462. https://doi.org/10.1016/s0278-

6915(02)00086-8 PMID: 12387309

30. Gutiérrez-Garcı́a AG, Contreras CM, Mendoza-López MR, Garcı́a-Barradas O, Cruz-Sánchez JS.
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