Journal of Theoretical Biology 356 (2014) 1-10

Contents lists available at ScienceDirect

Journal of Theoretical Biology e

journal homepage: www.elsevier.com/locate/yjtbi

x Journal of
Theoretical
'Biobgy o

i

&

Coaction versus reciprocity in continuous-time models of cooperation @CmssMark

G. Sander van Doorn *”* Thomas Riebli?, Michael Taborsky '

2 Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland
b Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands

HIGHLIGHTS

e Coordination and information exchange are prominent in animal social interactions.

e We study how these features affect the evolution of cooperation.

e The ability of players to respond to each other in real time supports cooperation.
e Delays in information exchange (inherent to reciprocal altruism) favour selfishness.
e Cooperative coaction therefore evolves more readily than reciprocal cooperation.
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Cooperating animals frequently show closely coordinated behaviours organized by a continuous flow of
information between interacting partners. Such real-time coaction is not captured by the iterated prisoner's
dilemma and other discrete-time reciprocal cooperation games, which inherently feature a delay in
information exchange. Here, we study the evolution of cooperation when individuals can dynamically respond
to each other's actions. We develop continuous-time analogues of iterated-game models and describe their
dynamics in terms of two variables, the propensity of individuals to initiate cooperation (altruism) and their
tendency to mirror their partner's actions (coordination). These components of cooperation stabilize at an
evolutionary equilibrium or show oscillations, depending on the chosen payoff parameters. Unlike reciprocal
altruism, cooperation by coaction does not require that those willing to initiate cooperation pay in advance for
uncertain future benefits. Correspondingly, we show that introducing a delay to information transfer between
players is equivalent to increasing the cost of cooperation. Cooperative coaction can therefore evolve much
more easily than reciprocal cooperation. When delays entirely prevent coordination, we recover results from
the discrete-time alternating prisoner's dilemma, indicating that coaction and reciprocity are connected by a
continuum of opportunities for real-time information exchange.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The iterated prisoner's dilemma (IPD) (Axelrod and Hamilton,
1981) is the most frequently used game-theoretical paradigm to study
the evolution of cooperation among unrelated individuals. It is
fundamental to theories of reciprocal altruism based on direct
(Trivers, 1971; Axelrod and Hamilton, 1981), indirect (Nowak and
Sigmund, 1998) and generalized reciprocity (Pfeiffer et al, 2005).
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Yet, among biologists interested in the evolution of animal social
behaviour, dissatisfaction with the IPD as a theoretical framework for
studying cooperation has grown (Clutton-Brock, 2009), and several
reviews have questioned its empirical relevance (Connor, 1995;
Hammerstein, 2003; Noé, 2006; Raihani and Bshary, 2011).

One aspect of the IPD that has attracted much criticism is that
players are assumed to decide on their actions independently of each
other, without having access to information about the choice being
made in the same round by the other player (Noé&, 2006; Clutton-
Brock, 2009). Though natural in the context of the discrete time
structure of the IPD, this assumption is problematic for several reasons.
First, the lack of information exchange between players can be
exploited, posing a danger to the maintenance of cooperation. Second,
establishing reciprocal exchange in the IPD is difficult (Stephens et al.,
2002), because it requires players to pay in advance for an uncertain
future benefit. In fact, all animals tested so far (including humans)
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show temporal discounting, which means that they devalue future
relative to immediate rewards (Chung and Herrnstein, 1967;
Kalenscher and Pennartz, 2008). Moreover, when behavioural deci-
sions are separated in time from the feedback about the consequences
of those decisions, the effectiveness of simple associative learning
mechanisms will be undermined, forcing players to rely on some sort
of memory of past interactions to infer the optimal choice in the
current round (Brosnan et al, 2010). Only species with highly
advanced cognitive abilities are considered capable of solving decision
problems of this kind (Stevens et al, 2005). Still, cooperation is
observed in some organisms clearly lacking such abilities (e.g.,
Milinski et al., 1990; Rutte and Taborsky, 2008; Krams et al., 2008),
suggesting that cooperative interactions between animals differ in
important aspects from the IPD.

Tellingly, one of the main challenges in designing empirical tests of
the IPD is to restrict the flow of information between players such that
they make their decisions independently of each other (Noé&, 2006).
Successful tests have been performed in humans (Milinski and
Wedekind, 1998; Gintis et al., 2003) and other animal species
(Clements and Stephens 1995; Hauser et al, 2003; Rutte and
Taborsky, 2008), but not without forcing subjects to interact under
highly artificial conditions. In contrast, natural cooperative behaviours,
such as predator inspection (Milinski et al, 1990; Pitcher, 1992),
cooperative hunting (Boesch and Boesch, 1989) or joint territory
defence (Krams et al., 2008), typically rely on social information
exchange. Individuals may observe the current actions of their
partners and respond immediately to changes in their behaviour, or
they may actively communicate with each other while they establish
or maintain cooperation. As a result, cooperation between animals
generally involves coaction or more advanced forms of behavioural
coordination (Boesch and Boesch, 1989; Schuster, 2002). ‘Acting
together’ has in fact been proposed as a simple operational definition
of cooperation (Taborsky, 2007) and it has been emphasized that the
‘achievement [of cooperation] requires collective action’ (Dugatkin,
1997, p. 14). In humans, it has been shown experimentally that
synchronous action can foster cooperation, partly because it may help
to mitigate the free-rider problem (Wiltermuth and Heath, 2009).

The implications of social information exchange and behavioural
coordination for the evolution of cooperation are not well understood,
because in biology few theoretical models have strayed from the
elementary game structure of the IPD. In the present paper, we
therefore analyse a continuous-time model of cooperation that allows
individuals to respond in real time to the behaviour of their partner.
In this model, pairs of players are able to establish cooperation by
coordinating current behaviour, as opposed to reciprocating favours
that are separated in time. Previous work on dynamic games in
economics suggests that the time-structure of interactions is of critical
importance for the establishment of cooperation between human
players in a public-goods game (e.g., Marx and Matthews, 2000; Duffy
et al, 2007). The reason is that information exchange allows for
smaller history-contingent contributions to the public good, enabling
each of the players to try the other's good faith for a small price
(Schelling, 1960). We show here that this effect also has implications
for the evolution of cooperation. In fact, our analysis indicates that
restricting the flow of information between players is equivalent to
increasing the cost of cooperation. The exchange of social information,
which accompanies natural cooperative interactions between animals,
therefore creates conditions that are much more favourable for the
evolution of cooperation than one would predict from theory based on
the IPD.

2. The model

The distinguishing feature of our model is that individuals can
switch between actions in continuous time rather than in discrete

Table 1
Payoff parameters and model variants.

Payoff to focal Partner plays D c
Focal plays D P=0 T=b
C S=-c R=b—c+h
Stag-hunt game* kp >0
b—c+h>b>0>—-c = {kD<0d
d
Snowdrift game® ke—1<kp <O
b>b—-c+h>-c>0 = 0<ke <1
d
Prisoner's dilemma“ kp >0
b>b-c+h>0>-c = 0<ke <1
c

?In the stag-hunt game, players prefer mutual defection over unilateral
cooperation, disfavouring the initial establishment of cooperation. However, once
cooperation has been established between a pair of players, neither has an
incentive to cheat.

b In the snowdrift game (also known as the hawk-dove game or the game of
chicken), unilateral cooperation is preferred over mutual defection, but players
achieve the highest payoff if they defect when their partner cooperates.

¢ The prisoner's dilemma combines the social dilemmas of the snowdrift and
stag-hunt game. Unilateral defection is preferred over mutual cooperation, and
mutual defection is preferred over unilateral cooperation, such that p is the
dominant strategy in a one-shot game.

4 The dimensionless parameter combinations k,=c/b and k.=(c—h)/b measure
the relative cost of playing c when the partner defects or cooperates, respectively.
These parameters appear in Figs. 2, 3, 5 and S2.

rounds. Other than that, we closely follow the assumptions of
standard iterated cooperation games (Macy and Flache, 2002).
The results presented here focus almost exclusively on the prison-
er's dilemma game, but our analysis extends to the strategically
different situations embodied by the snowdrift and the stag-hunt
game (Table 1). Each player interacts with the same partner over
an extended period of time, allowing for repeated interactions.
During this time, the momentary rate of increase of a player's
payoff is dependent on its own action and that of its partner.
Players can choose between two actions, labelled ‘cooperate’ (c)
and ‘defect’ (p), such that a pair of two players i and j can be in one
of four discrete states at any moment in time. The state of the pair
will be denoted by a combination of two letters, pbp, bc, cb or cc,
indicating the action currently played by the focal individual i,
followed by the action currently played by its partner, individual j.

2.1. Pair-state dynamics

Each player's strategy is specified by four parameters that
determine the rate at which the individual switches between
cooperation and defection, depending on the current state of the
pair. The four switching rates are assumed to be bounded away
from zero by a small constant O < &<1 (Selten, 1975). We use
o;i=(pi qi, Ti, Si) and 6;=(p;, q; 1 S;) to denote the strategies of
individual i and j, respectively, and associate the strategic para-
meters with transitions between the states of the pair in the
following way:

Dpi Ti
i changes state: DD=CD DC=CC
G 5
y ) M
j changes state: DD=DC (CD=CC

4q; Sj

From here it is straightforward to derive ordinary differential
equations for the probability distribution of pairs over the differ-
ent states. For example, f.,(t), the probability of finding a pair in
state cp at time t, changes through time according to the equation
(d/dt) fep(t) = p; fop () +Sj fec(t) = (qi+1) fep(t). Similar equations
for the other pair states give rise to a system of linear ordinary
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differential equations that can be solved explicitly for its equili-
brium (Eq. (4)). When the switching rates are bounded away from
zero, the equilibrium is unique and stable (§S1.1; throughout,
labels starting with ‘S’ will refer to items in the Supplementary
online material). In addition, the stochastic process of pair-state
switching is then ergodic, meaning that the equilibrium describes
both the long-term time-averaged distribution over pair states of
an individual pair, and the ensemble average frequency of pair
states once equilibrium has been reached.

2.2. Payoffs from cooperation

Players receive b fitness units per unit of time when they defect
while their partner cooperates; they lose c fitness units per unit of
time when they cooperate while their partner defects, and gain
b—c+h fitness units per unit of time when they cooperate
simultaneously with their partner. No payoff is accumulated when
both partners defect. Throughout, we assume that b—c+h >0,
such that bilateral cooperation yields a higher payoff than bilateral
defection. In terms of the usual payoff parameters P, R, S and T of
the prisoner's dilemma game (Axelrod and Hamilton, 1981),
b=R— P represents the benefit of an act of altruism to the receiver,
c=P—S measures its cost to the actor, and h=P+R—-S—T can be
interpreted as the benefit of coordinating actions with the partner.
To ensure that T> R > P > S (the payoff relationships characteristic
of a prisoner's dilemma), it is necessary that ¢ >0 and h <c. The
parameter regimes corresponding to the snowdrift (T>R > S > P)
and stag-hunt game (R > T > P> S) are listed in Table 1.

Assuming that individuals i and j interact for an extended
period of time 7>£~!, we calculate the payoff per time unit to
individual i as

(04,07) =fpc b—fcp ¢+fcc (b—c+h), )

where f; is the long-term time-averaged frequency of pairs in state
k (k=pp, pc, co or cc). The payoff function 7 depends on the focal's
strategy and that of its partner, because both individuals affect the
distribution of pair states by their actions.

2.3. Lifetime reproductive success

The lifetime reproductive success of an individual is assumed to
increase linearly with the payoff from cooperation. Accordingly,
the average fitness of an individual with strategy o; is written as
w(o;)=S(0;)(1+E[n(c;, ©;)]), where S(c;) denotes the survival
probability of the focal individual. Assuming that individuals are
paired at random, the expectation E[ ] in the second term of the
fitness function is calculated over the distribution of o; in the
population. We ensure that fitness is positive by taking the payoff
parameters b, ¢ and h to be small relative to the baseline
reproductive success, which is scaled to one without loss of
generality. The survival probability of an individual is allowed to
depend on its strategy in order to enable the incorporation of
switching costs in the model. Players may in principle switch
between actions at an arbitrarily high rate, but we assume that
speeding up information processing and the execution of beha-
viour trades off negatively with survival. As a result, viability
selection is stabilizing, with the strategy 6o=(0, 0, 0, 0) maximiz-
ing survival (scaled such that S(6g)=1).

If evolution is mutation-limited and, hence, the population
variance in ¢ is small, the effects of viability selection and the
cooperative interactions become additive. In order to show this,
we first approximate the expected payoff from cooperative inter-
actions by the first two terms of its Taylor series: E[z(0;, 6))] ~
7(6;,6)+E[6; — 6](0/06)7(6;,G), where 6 =(p,q,7,s) is the mean
strategy in the population. This approximation has a truncation
error of O(IZI?), where IIZIl is the norm of the phenotypic

variance-covariance matrix of the strategic variables (a quantity
that is guaranteed to be small under mutation-limited evolution).
Next, after realizing that E[6;—6]=0 and applying another Taylor
expansion around o; = &, the relative fitness of strategy o; is
approximated as follows:

W(0i,0) _ (5(6)+(0i—6)(0/96)S(0)ls — 5)(1 +7(5, ) +(Gi — 5)(9/00)7(T., 6)ls - 5)
w(G,5) 5©)(1+7(5,6))

~1+(6;—06)(9/906)(In 5(6)+ In(1+7(6,6))ls 7 3

which also has a truncation error of O(IZI1?).

3. Results

The model was analysed by a combination of mathematical
techniques and individual-based simulations. The latter incorporate
the effects of genetic drift and do not rely on the approximations
(weak selection, mutation-limited evolution) needed in the formal
analysis. Fig. 1a shows the outcome of an individual-based simula-
tion run. In this example, the switching rates p, q, r and s display a
regular pattern of oscillations over evolutionary time. The popula-
tion goes through three phases, comparable to what has been
observed in discrete-time models of the iterated prisoner's dilemma
(Nowak and Sigmund, 1989; Imhof et al., 2005). First, populations
with low levels of cooperation are invaded by conditional coopera-
tors, who are willing to coordinate actions and maintain mutual
cooperation with a cooperating partner. The establishment of
conditional cooperation paves the way for the invasion of more
generous cooperative strategies, which subsequently invite the
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Fig. 1. Evolution of the rates of switching between cooperation and defection in an
individual-based simulation. Cooperative interactions between pairs of players
were simulated in a population of 100,000 individuals. Each individual carried
4 sets of diploid unlinked autosomal loci, coding for the switching rates p, g, r and s.
Mutation occasionally introduced novel alleles at these loci. (a) For b=0.5, c=0.2,
h=0.15 and weak stabilizing viability selection (y;=1-10"*and y,=y; x,=1-10"3;
see §51.2) the evolution of the switching rates exhibits regular oscillations with a
period of approximately 25,000 generations. (b) Thick black lines show the
dynamics of altruism (x=In[(pr)/(gs)]/2) and coordination (y=In[(qr)/(ps)]/2) in
the simulation shown in (a). Corresponding predictions based on the analytical
model (Egs. (4)-(6)) are shown as thin grey lines. Here, we fitted only the time-
scale parameter « (Eq. (6)) in order to match the period of the oscillations (§S2).
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evolution of cheating behaviour (manifested by a slow erosion of r,
followed by a rapid increase of s). Eventually, cooperation breaks
down, and the population evolves back to a state characterized by
high levels of mutual defection.

Supporting the above interpretation, our mathematical analysis
traces the cause of the evolutionary cycles of the switching rates p,
g, r and s to an interaction between two factors, the propensity of
individuals to cooperate unconditionally and their tendency to
establish and maintain bilateral cooperation. In fact, a substitution
of variables confirms that the essential features of the evolutionary
dynamic of the four switching rates are captured by a dynamical
model with only two variables (Fig. 1b; §51.3). The new coordi-
nates, x and y, are related to the original switching rates by
x=(1/2)In((p7)/(@53) and y=(1/2)In((qT)/(P5)), which can be
interpreted as measures of the tendencies to cooperate uncondi-
tionally (‘altruism’) and coordinate actions with the partner
(‘coordination’), respectively. The equilibrium frequencies of pair
states are represented in terms of these new variables as

e—X
Top == ze v ren
e Y d
= =——F—— an
Jfoc=Ffo e—%12e—V 1 e
ex

fee 4

Text2e Vet
3.1. Analytical results
The gradient of the fitness function (3) with respect to the new

strategic variables x and y consists of terms that derive from three
different sources of selection (§51.2-3)

related to response to changes in one's own state, the state of the
partner and the coordination state of the pair. The marginal fitness
costs associated with each of these components are measured by
the parameters y;, y> and yq.». One would typically expect
71 <Y2<71x2 since responding to changes in the behaviour of
the partner is likely to require more complex information processing
mechanisms than responding to changes in one's own actions, yet
both of these might be easier to achieve than rapidly coordinating
with the partner. We assume throughout that the marginal cost
parameters are small such that stabilizing selection is weak.

The strategic variables x and y change over evolutionary time
under the influence of selection in a direction that is positively
correlated with the fitness gradient (Hofbauer and Sigmund, 1998).
If evolution is mutation-limited, the dynamics of this process can
be modelled as

d(X Wy
{)-elz)

where k is a constant positive prefactor that depends on the rate of
mutations and the population size, and G is a 2 x 2 matrix with
mutational variances V and V, on the diagonal and mutational
covariance C, off the diagonal (Dieckmann and Law, 1996).
We treat the mutational (co)variance matrix as constant, which
amounts to assuming that mutations of the original rate para-
meters p, q, 1, and s have multiplicative effects on the phenotype
drawn from a fixed distribution. This is the simplest biologically
reasonable mutation model for rate parameters, which have a
natural lower bound at zero.

Potential endpoints of evolution can be found by solving for
combinations of x and y at which w, and w, vanish. If the
switching costs are negligible, there is at most one evolutionary

9 In(w(6,8) 5 Tcc—T 7ipp — 7 b+c
Wy ="y5"" ’c:&f’%_ 5 fec— 5 fop 5 feo =YX,
al 5 G Tcc—T7 ZTpp — 7 b+c X 5
Wy:in(‘évécc))‘cza%’= ) fect 5 fop 5 fCDtanh(j> —V1x2Y )

maximization of mean fitness

The first component acts to maximize the mean fitness of pairs
in response to the differences between the mean payoff
w=fpc b—fcp c+fcc(b—c+h) and the payoffs in the coordinated
pair states, 7,,=0 and m.=b—c+h. The mean fitness of pairs is
maximized in state cc (i.e., at large positive values of x), unless the
payoffs from unilateral cooperation and defection on average
exceed 7. (this requires h < —(b—c)/2, in which case selection
favours anti-coordination, i.e., large negative values of y). A second
source of selection captures the selfish interests of players to
exploit their partner. The difference b—(-c)=b+c between the
payoffs for a player in states pc and state cp creates an incentive for
individuals to (1) become less altruistic (i.e., selfish interests
invariably favour lower values of x), (2) coordinate actions with a
partner who defects, and (3) anti-coordinate with a cooperating
partner. Accordingly, the direction of selection on y is determined
by the sign of x (this feature is captured by the factor tanh(x/2)).
The final terms on the right-hand side of Eq. (5) incorporate the
stabilizing effect of viability selection, which pushes x and y in the
direction of x=0 and y=0, respectively.

The particularly simple form of the stabilizing selection terms
in Eq. (5) is obtained for a selection function S that is a product of
Gaussian stabilizing selection functions (§S1.2). The underlying
assumption motivating this choice is that the fitness cost for rapid
switching can be decomposed into three independent components

incentives for unilateral defection

stabilizing viability selection

equilibrium with equilibrium values given by x*=In(c/(c—h)) and
y*=In((b+c)/(b—c+h)). The equilibrium exists only if ¢ and c—h
have the same sign, implying that the payoff relationships must
obey the parameter constraints of the prisoner's dilemma
(Table 1). In the snowdrift game (-b < ¢ < 0), selection invariably
leads to negative levels of altruism and coordination, with
y~x+In(-(b+c)/c) (and x—-oo in the absence of viability costs).
In this case, pairs switch between periods of mutual defection and
unilateral cooperation. Each individual cooperates for a fraction
—c/(b—c) of the time, during which time the other individual
defects. The pair spends the remaining time in state pp, and
fop=(b+c)/(b—c). In the stag-hunt game, selection favours high
values of altruism and coordination, allowing individuals to
coordinate effectively on bilateral cooperation (f.c—1).

The stability of the equilibrium (x* y*) is determined by
linearizing equation system (6) around the equilibrium point. If
mutations have no pleiotropic effects (Cy,=0) and the mutational
variances are equal (Vy=V,; see §S1.4 and Fig. S1 for more general
results) the equilibrium changes its stability at h=0 (condition 1)
orat b—2c+h=(b—c)/2 (condition 2). Both of these conditions are
associated with the origin or disappearance of a limit cycle.
Condition 2 is reminiscent of the well-known parameter con-
straint b—c+h>(b—c)/2 (or, R>(S+T)/2) in the discrete-time
IPD, which ensures that establishing bilateral cooperation yields a
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cost of bilateral cooperation, k.= (c - h) /b
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Fig. 2. Five qualitatively different dynamical regimes for the evolution of altruism (x) and coordination (y). (a)-(e) Each phase diagram shows the vector field with fixed
points (black: stable node or spiral; grey: saddle point; white: unstable node or spiral), null-clines (dashed and dotted black lines) and some illustrative evolutionary
trajectories in grey. Stable periodic orbits (present in (b) and (d)) are shown as black solid lines. (f) The evolutionary dynamics depend qualitatively on the relative costs of
unilateral and bilateral cooperation (measured by k, and k, respectively; Table 1). Each of the dynamical regimes (labelled as 1-v) occurs in its own region of parameter space
which is separated from other regions by lines of Hopf, homoclinic or fold bifurcations (§S1.6 for additional technical details and a characterization of the codim-2 bifurcation
points (diamonds)). Parameters are b=0.1, y;=2-10"> and y; .o=4-10"5; in panel (a)-(e), c=0.055 and h=0.02, 0.045, 0.01, -0.015 and -0.03, correspondingly.

higher payoff than alternating between cp and pc. Note that, in a
continuous-time model, mutual cooperation (yielding payoff
b—c+h) can only be established after a phase of unilateral coopera-
tion (yielding payoff —c). A qualitative change in the evolutionary
dynamics occurs when the net fitness effect of this two-step
transition (b—2c+h) equals the mean payoff in states co and bc.

Whenever the equilibrium (x*, y*) is stable with respect to the
dynamics described by Eq. (6), it is also stable against invasion by
all mutants that differ slightly from the equilibrium strategy, i.e.,
convergence stability and local evolutionary stability coincide
(8S1.5, but see the discussion of Figs. 4 and 5).

3.2. Numerical bifurcation analysis

In order to investigate the evolution of altruism (x) and
coordination (y) in more detail, we ran simulations of equation
system (6) for different combinations of the payoff and viability
selection parameters. Here, we concentrate on the effects of two
dimensionless combinations of the payoff parameters (Table 1),
the relative cost of unilateral cooperation (k,=c/b), and the
relative cost of bilateral cooperation (k.=(c—h)/b). Results for
the viability selection parameters are shown in Fig. S2b and c.
We observed five qualitatively different outcomes (henceforth
regime i-v, represented in Fig. 2a-e), that differ in the number of
equilibria and/or the nature of the evolutionary attractors (fixed

point or stable cycle). The five regimes are separated from each
other by bifurcation lines (Fig. 2f), which can be traced through
parameter space by numerical methods (§S1.5). Each point on a
bifurcation line identifies a special combination of parameters at
which the dynamical behaviour of the model changes from one
regime to another. We observed three different types of such
qualitative changes (Fig. 2f): ‘fold’ bifurcations (marking the
sudden emergence of a pair of equilibria), ‘Hopf bifurcations
(associated with the birth of a limit cycle) and ‘homoclinic’
bifurcations (where a limit cycle disappears as it collides with a
saddle point). Additional details are provided in Fig. S2 and the
accompanying text in the Supplementary material (§51.6).

Fig. 3 illustrates the realized levels of altruism along a transect
through parameter space (k,=0.55; 0 <k.< 1) that passes through
each of the five dynamical regimes described in Fig. 2. Small insets
show simplified phase-diagrams that characterize the evolutionary
dynamics in each of the regions (indicated by alternating background
colours). Bifurcations occur on the boundaries between regions. A
broad observation is that the realized level of altruism decreases with
the cost of bilateral cooperation, as one would expect. However, in
some cases, larger costs lead to an increase in altruism, due to the
emergence of evolutionary oscillations with a time-average domi-
nated by cooperative strategies (as in Fig. 1). The time-average of the
oscillations may also be biased towards non-cooperative strategies.
This occurs close to the homoclinic bifurcation (at k.=0.77 in Fig. 3),
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altruism, x
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Fig. 3. Realized levels of altruism as a function of the cost of cooperation The
various black curves indicate the stability and location of fixed points along a
transect through parameter space, as well as the minimum, maximum and time-
average of x in cases where evolution converges on a stable periodic orbit. Small
insets show simplified phase diagrams (with axes and scale as in Fig. 2a-e) at
specific points along the transect (indicated by arrows). For these parameter
conditions (b=0.1, y;=2-10">, 7;,,=4-10"° and c=0.055, corresponding to
k,=0.55), the system passes through each of the dynamical regimes identified in
Fig. 2 as the costs of initiating bilateral cooperation are varied. The different
regimes are indicated by the labels 1-v and alternating background colour.
Qualitative changes in the number and type of evolutionary attractors, which
occur on the boundaries between grey and white areas, can be associated with
discontinuous jumps in the realized level of altruism (grey arrows). The thick grey
line coinciding with part of the equilibrium curve represents the analytical
prediction for the location of the equilibrium in the absence of response costs.

as the evolutionary dynamics come nearly to a stop in the vicinity of
the saddle point.

There is always an equilibrium close to the point (x* y*)
predicted by the analytical results (Fig. 3, thick light-grey curve)
if the response cost parameters y; and 7 ., are small relative to
the payoff parameters. Yet, there may be up to two additional
equilibria that do not show up in the analysis for negligible costs.
The presence of these equilibria leads to bistability over a wide
range of parameters. As a result, hysteresis and discontinuous
changes in the frequency of cooperation (indicated by arrows) may
occur in response to fluctuations of the payoff parameters.
Viability selection also has consequences in the snowdrift and
the stag-hunt game, where response costs prevent the strategic
variables from diverging to + co. In both games, evolution con-
verges on a unique stable equilibrium, either at low (snowdrift
game) or high (stag-hunt game; Fig. 3, k. < 0) levels of altruism.
The realized distribution of pair states at these equilibria is
nevertheless close to what one would predict based on the
analysis for negligible costs.

3.3. Comparison with discrete-time models of cooperation

In discrete-time models of cooperation such as the IPD, players
cannot react immediately to changes in the behaviour of their
partner. Instead, they are forced to rely on information of past
interactions. The lack of real-time information allows for a discre-
pancy between inferred and actual behaviour that can be exploited
by cheaters. In order to illustrate how this problem unfolds as the
exchange of information between players is restricted, we extended
our model by introducing an information delay. Specifically, we
assumed that it takes some time before an individual becomes aware
of changes in the behaviour of its partner. This delay allows for an
information asymmetry between players, which is a characteristic
feature of discrete-time models of cooperation. Indeed, for delays
comparable to the decision time of individuals, we recover results of

discrete-time models of the alternating (or asynchronous) prisoner's
dilemma (Frean, 1994; Nowak and Sigmund, 1994).

In the extended model, the state of a pair is represented by a
combination of four letters, successively designating the actual
state of focal individual (p or c), the perceived state of its partner
(denoted by lowercase d or c), the actual state of its partner (b or c)
and the state of the focal individual as perceived by its partner
(lowercase d or c). Consider, for example, a pair of conditional
cooperators who establish mutual cooperation after a period of
mutual defection. If the delay in information exchange between
the players is small and focal individual i is the player initiating
cooperation, then the pair is likely to pass through the following
sequence of states during the transition

1/6

cdpd 4 kK

DdDd LY cdoe 4 cdce B cece

here, changes in actual state (in the first and third step of the
sequence) are mirrored by changes in perceived state (second and
fourth step) at rate 5!, in such a way that it takes, on average, &
time units for an individual to become aware of a change in its
partner's behaviour. In order to understand how such a delay
might interfere with the establishment of cooperation, it is useful
to consider alternative events that might occur along the pathway
leading towards mutual cooperation. For a pair of conditional
cooperators, the most likely alternatives leading away from the
original pathway (highlighted in boldface) are

Pi P;j
DdDd % cdbd g— cdcd
i lj
l]/&
" 5, -
DdDc < CdDc < CdCc < DdCc
i ] 1
11/
U Si
CcDc ¢ CeCc < DcCc
j i

(with the length of arrows indicating the relative magnitude of
forward and reverse transition rates). Conditional cooperators are
more likely to cooperate with a cooperating partner than to
initiate unilateral cooperation with a partner who defects, imply-
ing that the first step of the transition process is rate-limiting. Note
also that it takes until the last step in the sequence before
individual i becomes aware of the change in its partner's beha-
viour. Before that step, individual i assumes that its partner is
defecting, meaning that it has a high probability of switching back
to defection itself. In a similar way, individual j is unlikely to
switch to cooperation before it becomes aware of the change in its
partner's behaviour in the second step of the sequence. As a result
of these asymmetries (i.e, g;>s; and rj>p;), delays in the
exchange of information make it more difficult for conditional
cooperators to coordinate on bilateral cooperation. In fact, a player
must be willing to cooperate unilaterally (to the best of its
knowledge) for 26 time units, before it can reasonably expect to
find out whether the help provided is being reciprocated.

The fitness function in the model version with delays depends
on the stable frequency distribution of the pair over the actual
(not perceived) states of the individuals. We could not solve
analytically for this frequency distribution, preventing us from
performing a full bifurcation analysis. Yet, we were able to numeri-
cally track the location of the equilibrium points, and used numer-
ical integration methods to detect the stable attractors for a range of
values of 6. Fig. 4 shows results for two different combinations of
the payoff parameters b, ¢ and h. In both cases, small delays
(6 <0.001) destabilize cooperation, resulting in the emergence of
evolutionary oscillations. Well before the delay in information
transfer becomes comparable to the typical time between changes
in an individual's actual state (at 6 ~ 1), the evolutionary oscillations
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Fig. 4. Cooperation breaks down with delays in the transfer of information
between interacting partners. Fixed points and periodic orbits were located across
a range of values for §, the information delay in the extended model (attractor type
and stability are indicated as in Fig. 3; dotted lines show the approximate extreme
values of x along an unstable limit cycle). Restricting the flow of information
between players has effects strikingly similar to increasing the cost of cooperation.
A qualitative difference with Fig. 3 is that a new stable cooperative equilibrium may
emerge at higher values of §. This equilibrium is initially separated from the other
stable attractor by an unstable limit cycle. In (a), the novel cooperative equilibrium
disappears at longer delays; in (b), it persists. The novel dynamical regime wvi
(featuring two stable fixed points, a saddle point and an unstable cycle) is
connected to regime m by a homoclinic bifurcation. Parameters are b=0.05,
r1=72=1-10">, 51 ,,,=2-10""; in panel (a), c=0.01 and h=-0.005; in panel (b),
¢=0.025 and h=0.01.

are lost again as a result of the appearance of a new stable fixed
point with high rates of defection. Populations that initially track
the evolutionary cycle will end up at this attractor and stay there
when the information delay is increased further. This outcome is
comparable to the effect of increasing the cost of cooperation and
caused by a similar sequence of bifurcation events (cf. Fig. 4a and
the left part of Fig. 3).

A novel cooperative equilibrium appears in Fig. 4a (at 6=0.076)
and Fig. 4b (at 6=0.33), which is initially separated from the other
stable equilibrium by an unstable limit cycle. This solution is similar
to the winning strategy in tournaments of the alternating prisoner's
dilemma (‘firm but fair’; Frean, 1994), the discrete-time analogue of
our extended model. The novel equilibrium is locally evolutionarily
stable (§S1.5), i.e,, it is resistant against invasion by mutants that are
similar to the equilibrium strategy, but not globally stable. Specifi-
cally, a mutant playing the non-cooperative equilibrium strategy
(which may immigrate from another population, for example), can
increase in frequency and replace the cooperative resident strategy.
The results shown in Fig. 5 indicate this to be a general outcome.

Fig. 4a is illustrative for other parameter combinations with
h < 0 (Fig. 5, above the main diagonal). Here, equilibrium solutions
supporting more than a minimal level of cooperation are even-
tually lost as individuals are increasingly unable to coordinate
their actions. Likewise, the bifurcation diagram shown in Fig. 4b is

typical for much of the remaining parameter space. When h >0
(Fig. 5, below the main diagonal), there is an equilibrium with high
levels of cooperation to which evolution will converge from a
range of initial conditions (Fig. 5a-d and insets in panel e-g). This
equilibrium is locally evolutionarily stable, but it is typically not
resistant against invasion by defectors at low information transfer
rates. In most of the parameter space, the only equilibrium that is
evolutionarily stable as well as a stable endpoint of the evolu-
tionary dynamics of mutation and selection (Eq. (6)) features
minimal levels of cooperation (Fig. 5a-g, main panels). In other
words, with long delays in the transfer of information between
players (Fig. 5e-g) high evolutionarily stable levels of cooperation
can only be maintained under a restricted range of parameters.

4. Discussion

The conditions of the iterated prisoner's dilemma are rarely
met in animal societies under natural conditions (Connor, 1995;
Hammerstein, 2003; Noé, 2006; Clutton-Brock, 2009; Raihani and
Bshary, 2011). Instead of a discrete sequence of decisions to
cooperate or not, made by two interacting partners with limited
possibilities to predict their partner's response, it seems more
realistic to think of cooperation as an outcome of social partners
adjusting their decisions to a continuous flow of information
between them (Pitcher, 1992; McNamara et al., 1999; Mendres
and de Waal, 2000; Schuster, 2002). Cooperative hunting (e.g.,
Boesch and Boesch, 1989) provides a striking example where two
or more individuals constantly adjust their behaviour and effort to
the actions of other participants in the hunt.

To capture the aspect of close behavioural coordination in
natural cooperative interactions, we analysed a continuous-time
cooperation game where players could observe each other's
actions and respond in real time to changes in the behaviour of
their partner. Two variables are sufficient to describe the long-
term evolution of the strategies in such a coaction game (Fig. 1).
The first variable, x, reflects the propensity of individuals to
cooperate unconditionally and initiate unilateral cooperation
(‘altruism’); the second variable, y, measures the tendency to
adopt the same behaviour as the partner (‘coordination’).

High levels of altruism and coordination evolve when players
benefit from maintaining bilateral cooperation, whereas establish-
ing cooperation with a defecting partner is costly (the social
dilemma embodied by the stag-hunt game). Alternatively, if
unilateral cooperation is preferred over mutual defection, but each
player has an incentive to cheat when its partner cooperates (the
social dilemma embodied by the snow-drift game), the outcome of
evolution is that players alternate between periods of bilateral
defection and unilateral cooperation.

Intermediate levels of altruism and coordination are observed for
payoff parameters characteristic of the prisoner's dilemma. Evolution
may then either converge on an evolutionarily stable fixed point, or
on a limit cycle. When cooperation is costly, the evolutionary
dynamics are bi-stable (Figs. 2c and d and 3), due to the presence
of a second attractor at low levels of altruism. This equilibrium
remains as the sole attractor if the benefit-to-cost ratio of providing
help becomes prohibitively unfavourable (Figs. 2e and 3).

Our results show several parallels to discrete-time models of
iterated social dilemma games. First, depending on the payoff
relationships, the observed equilibrium strategies exhibit similar
properties as successful strategies in the IPD (generous Tit-for-Tat
and Pavlov) (Nowak and Sigmund, 1993), or they are similar to
known evolutionarily stable solutions for the iterated snowdrift
game (Van Doorn et al., 2003). Second, we observe evolutionary
oscillations as in discrete-time models of cooperation (Nowak and
Sigmund, 1989; Imhof et al., 2005) with the same characteristic
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Fig. 5. Maximum level of evolutionarily stable cooperation across equilibria. The procedure followed for Fig. 4 was repeated for a range of values of ¢ and h. For all stable
equilibria detected, we evaluated the realized level of cooperation and evolutionary stability. Panels (a)-(g) show the highest the realized level of cooperation (calculated as
the fraction of time an individual was cooperating, ranging from zero (black) to one (white)) for different values of &, across equilibria that were both convergence stable
(i.e., stable attractors of the evolutionary dynamics) and evolutionarily stable (resistant against invasion by alternative equilibrium strategies). If the delay in information
exchange between partners is not too high (panel (a)-(d); 6=10"%, §=103, 5=0.01 and 5=0.1, correspondingly), the equilibrium with the highest realized level of
cooperation is evolutionarily stable. For 5 > 1 (panel (e)-(g): =1, §=10 and 6= 100, correspondingly), there is still a convergence-stable equilibrium with a high frequency of
cooperation (shown in the insets). However, unless the relative cost of bilateral cooperation is small (k. < 0.15), this equilibrium can be invaded by defectors playing the
alternative convergence-stable equilibrium strategy. The alternative equilibrium (shown in the main panel) is evolutionarily stable and features minimal levels of

cooperation. Parameters are as in Fig. 4.

sequence of events: cautious conditional cooperators first outper-
form defectors, but are then gradually replaced by more generous
cooperative strategies, which eventually pave the way for the next
wave of defectors.

Notwithstanding these qualitative similarities, the conditions for
the evolution of cooperation differ widely between discrete-time
models of reciprocity and a continuous-time coaction model. If
individuals must base their decisions on past actions, populations
exhibiting high levels of cooperation become more vulnerable to
invasion by defectors (Fig. 5). In addition, introducing delays in the
exchange of information between players rapidly destabilizes coop-
eration and leads to the emergence of an alternative equilibrium with
high rates of defection (Fig. 4). These effects are qualitatively similar
to those of increasing the cost of cooperation, because obstacles to
social information exchange increase the risk of being exploited
while attempting to establish or maintain cooperation. Hence, our
results fit with the observation that the best suggested examples of
reciprocal cooperation generally concern rather inexpensive beha-
viours and/or repeated interactions between social partners within a
narrow time frame (Dugatkin, 1997; Clutton-Brock, 2009; but see
Cheney. et al.,, 2010). This applies, for example, to the exchange of
body care (grooming or preening) between two or more group
members in many birds and mammals (see Clutton-Brock, 2009 for
review).

Several recent theoretical studies have addressed aspects of
information exchange in social interactions. For example, confor-
mist social learning in various forms has been shown to promote
prosocial behaviour in structured populations (Molleman et al.,

2013; Szolnoki and Perc, 2013a). Similarly, Szolnoki and Perc
(2013b) have shown that the invasion of defectors is disfavoured
when individuals update their strategy rapidly relative to the
timescale at which their actions affect their payoff (e.g., when
the distribution of a public good in a cooperative group is delayed).
Other studies have come to qualitatively different conclusions. For
example, delayed and inconsistent information has no appreciable
effect on the evolution of trust and trustworthiness in a trust game
(Manapat and Rand, 2012) and in the snow-drift game, a lack of
information about payoff-relevant asymmetries between players
can even increase the tendency of individuals to cooperate, relative
to a situation in which players are aware of such asymmetries
(Mesterton-Gibbons and Sherratt, 2011). Hence, it is important to
recognize that the relationship between information exchange and
cooperation is multi-faceted, depending not only on the type on
information that is accessible to players (e.g., information about
strategies, current or past actions, or payoff-relevant asymmetries)
but also on the strategic context of their interaction (e.g., whether
or not it is beneficial to be predictable).

As a final point, we note that, in our extended model, coaction in
continuous time and reciprocity in discrete time are points of a
continuum along which social partners are more or less constrained
in exchanging information in real time (Fig. 4). This captures an
important aspect of cooperative interactions under natural condi-
tions, which typically depend on a mix of real-time information and
predictions based on past experiences. For example, in a coopera-
tively breeding fish species where subordinates in groups cooperate
to maintain and defend a territory, focal individuals are more likely
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to invest in digging out a common shelter if their respective social
partner does so as well during the same time interval, but also if it
has done so shortly before (Riebli and Taborksy, submitted for
publication). In the same study, the effect of a cooperating partner
was greatest when the collaboration occurred concurrently (coac-
tion), while the effect of previous helpful behaviour (reciprocity)
vanished with increasing time intervals between experience and test.
Many natural cooperative interactions are similar to this example in
that it is difficult to classify the mechanism of cooperation as either
pure coaction or pure reciprocity. This problem has been discussed
extensively for the predator inspection behaviour of fishes, which
may explore a perceived threat in pairs or groups of conspecifics
(Milinski et al., 1990; Pitcher, 1992; Dugatkin, 1997). It has been
argued that this behaviour reflects an IPD, with two social partners
taking turns in their approaches towards the perceived threat
(Milinski et al., 1990). However, in the initial experiments with a
mirror, predator-inspecting sticklebacks were actually responding to
their simultaneously moving mirror image rather than taking turns
with a true social partner while approaching the perceived threat
(Milinski, 1987). The interpretation of predator inspection as an IPD
has therefore been criticized (cf. Noé, 2006 for review), because
individuals have access to real-time information about the behaviour
of their partner.

In conclusion, cooperation by coaction is more easily obtained and
stabilised against exploitation by defectors than cooperation based on
reciprocity, which involves a time lag between investment and
compensation. Simultaneous and successive contingent cooperation
should, however, not be interpreted as alternative categories, because
the time axis underlying experience and response is continuous rather
than discrete (cf. Shapiro et al., 2008 for a similar perspective in a non-
cooperative context). We therefore argue against imposing an artificial
distinction between coaction and reciprocity in empirical studies that
aim to explain the contingent responses of social partners to each
other's cooperation propensity in a natural context, even if this
distinction is of conceptual value in the context of theoretical models
of cooperation.
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