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1. Association between egg cleaning and defence  

 
Cleaners were not more likely to defend than non-cleaners (Chi-square test with simulated p-
value; Χ" = 2.22, p = 0.45 (Table S1), but cleaners performed more defence behaviours than 
non-cleaners (Welch two sample t-test; t = 2.79, df = 10.7, p = 0.02, Table S2). 
 
Table S1: Associations of the propensities for egg cleaning and defence.  

 
cleaners non-cleaners 

defence yes 10 8 
defence no 0 2 
 
Table S2: Amount of defence behaviours performed by cleaners and non-cleaners during the opportunity.  

 
cleaners non-cleaners 

 
1 0 

 
40 14 

 
21 7 

 
56 13 

 
33 30 

 
76 4 

 
2 12 

 
83 10 

 
19 5 

 
26 0 

Mean 35.7 9.5 
Standard deviation 28.3 8.8 
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2. Sample sizes throughout the experiment 

 

  
Fig. S1: The initial sample sizes and their reduction through the stages of the experiment. 78 test fish entered the 
experiment. Subjects were removed from the experiment if they did not show the same egg-cleaning propensity in 
the second opportunity, when their brain could not be removed within 10 min after sacrificing them, and when the 
RNA-seq libraries did not fulfill the quality control (see Table S3). Thus, the differential gene expression analysis 
was based on 38 test fish. 
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3. Trimmomatic settings  

 
Trimmomatic software v.0.36 (Bolger, Lohse, & Usadel, 2014) was used to remove adapters 

sequences and low-quality sequences. We set ‘-phred33’ for base quality encoding, using 

sliding window of 20 base pairs (bp) with a quality threshold of 2, removing sequences at both 

ends below quality threshold of 2 remove sequences below length of 70 bp (Hebert, 2017). 

4. Quality control criteria for libraries 

All RNA-seq libraries had to fulfill the following criteria to enter the final analysis for differential 

gene expression: i) a number of reads >10M, ii) a proportion of duplicates <80%, iii) an average 

per-base quality (Phred score) ≥35, and iv) balanced sequence content (proportion of A, T, C 

and T must not vary importantly from one position to the next). This led to the exclusion of 10 

samples (see Table S3). 

Table S3: Quality control of samples grouped by experimental condition and helper phenotype for RNA extracts  
(RIN – RNA Integrity Number) and RNA-seq libraries. Diagnostics below the threshold (see text above) are 
highlighted in red, removed samples are highlighted in gray. 
sample condition phenotype RIN total reads % duplicates per-base quality sequence content 
1I6b control cleaner NA 29857326 62 36 good 
1X9b control cleaner 9,3 21362334 53 37 good 
4G1b control cleaner 9,7 19208554 57 36 good 
4P8b control cleaner 9,6 30866178 56 36 good 
5U1c control cleaner 9,1 17282729 50 37 ok 
5V7c control cleaner 9,8 19844389 59 36 good 
6J7g control cleaner 9,7 32406684 58 36 good 
6Ü7b control cleaner 9,9 21301108 51 37 good 
7X9c control cleaner 9,5 35521062 68 36 good 
8P4e control cleaner 9,7 23347931 53 36 good 
8V8e control cleaner 9,7 5277152 94 35 bad 
3Q1b control cleaner NA 11704954 80 35 bad 
3A3c control non-cleaner 10,0 20465876 52 36 good 
3Q9c control non-cleaner 8,7 25160465 56 36 good 
4K3d control non-cleaner 9,5 26388400 54 36 good 
5Ü7b control non-cleaner 9,3 22927709 57 36 good 
6J9f control non-cleaner 9,8 23246291 55 36 ok 
6V3c control non-cleaner 9,9 36305924 64 36 good 
8V8d control non-cleaner 9,8 21664611 52 36 good 
9A9d control non-cleaner 9,8 18594990 49 37 good 
4M7b control non-cleaner 9,8 512706 87 28 very bad 
9F6b control non-cleaner 9,5 884513 96 33 very bad 
1O1b control non-cleaner 10,0 15239373 97 31 bad 
6J7i control non-cleaner NA 1174304 82 35 bad 
1I6e opportunity cleaner 9,7 26397069 59 37 good 
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Table S3 continued 
sample condition phenotype RIN total reads % duplicates per-base quality sequence content 
1X9a opportunity cleaner NA 16988848 70 36 good 
3Q1c opportunity cleaner 10,0 20285452 51 37 good 
4P8c opportunity cleaner 9,7 25149072 59 37 good 
5U1a opportunity cleaner 9,6 23762752 55 36 good 
6V9b opportunity cleaner 7,1 17040636 65 35 good 
7R6e opportunity cleaner 9,7 17728033 48 36 good 
7X9b opportunity cleaner 9,8 20196519 51 36 good 
8V6b opportunity cleaner 9,5 18828265 52 37 good 
9V2d opportunity cleaner 9,4 19404757 50 37 good 
6Ü7c opportunity cleaner 9,8 3316930 87 35 bad 
5V7d opportunity cleaner 9,8 16084735 98 32 bad 
1O1a opportunity non-cleaner 9,9 20446246 50 36 good 
2S3a opportunity non-cleaner 9,1 21359521 64 36 ok 
3Q9h opportunity non-cleaner 9,8 23077228 61 37 good 
4K3b opportunity non-cleaner 9,8 28037022 57 37 good 
4M7a opportunity non-cleaner 9,3 24905698 55 36 good 
5Ü7d opportunity non-cleaner 9,8 28731210 56 37 good 
6J7c opportunity non-cleaner 9,6 28923836 57 36 good 
6J9a opportunity non-cleaner 9,7 19014450 55 37 good 
9A9c opportunity non-cleaner 9,3 21447518 54 36 good 
9F6d opportunity non-cleaner 7,0 23051743 54 36 good 
8V8c opportunity non-cleaner 9,7 719673 94 36 ok 
6V3e opportunity non-cleaner 9,5 20133658 79 33 bad 
 

5. Aligning reads to reference vs de novo transcriptome assembly 

We chose to align raw reads onto the published Nile tilapia (Oreochromis niloticus) genome 

instead of a de novo transcriptome assembly from the reads sequenced in this experiment. In 

the following, we list the reasons for this decision. The raw data generated in this study does 

not apply to this approach because they are short and single-end. Performing a de novo 

transcriptome assembly with short single-end reads using data from multiple individuals 

typically results in a highly fragmented and repetitive reference (Conesa et al., 2016), which 

becomes problematic when analyzing gene expression levels. In this context, we expect that 

the de novo transcriptome will be characterized by numerous very similar contigs due to allele 

splitting, i.e. sufficiently different alleles will be split into independent contigs by the assembler, 

thus increasing the number of redundant sequences in the final assembly and creating an 

abundance of unusable multi-mapping reads. This would ultimately bias gene expression levels. 

Accurate transcript reconstruction from short and unpaired reads is extremely difficult, not 
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recommended and generally considered suboptimal (Engström et al., 2013). Complete 

reconstruction of a transcriptome with the type of raw data that we have is a challenging 

problem that will result in hundreds of thousands of contigs accounting for fragmented 

transcripts. This will result in a final read-count matrix with hundreds of thousands of potential 

transcripts with very few counts for each transcript in each individual, a scenario in which the 

detection of differentially expressed genes becomes almost impossible, or at least very unlikely 

(too many comparisons and not enough per-individual counts to have sufficient statistical 

power). Previous work on RNAseq experiments evaluating different designs and strategies 

showed that mapping short reads on a well annotated genome of a divergent sister clade 

(especially in the context of non paired-end reads) outperformed de novo assembly in the 

identification of differentially expressed genes (Vijay, Poelstra, Künstner, & Wolf, 2013). In 

addition, due to the high content of gene duplicates in the genomes of cichlids in general, 

assembling a de novo transcriptome with short unpaired reads seems like an impossible task. 

Considering all of these elements combined together, we chose to use a very well constructed 

and annotated genome generated with long PacBio sequencing reads (Conte, Gammerdinger, 

Bartie, Penman, & Kocher, 2017), thus ensuring that we have a proper gene annotation to work 

with, as well as complete and non redundant gene sequences on which to align our short reads. 

O. niloticus and N. pulcher are two closely related species separated by ~15-25 My of evolution 

(Genner et al., 2007). O. niloticus represents the closest and most complete and well annotated 

genome that can be used in the context of this study and the high quality of this reference 

genome accounts for more in the “mapping success” than the divergence time between the 

two species (Henning & Meyer, 2014). Furthermore, in a study on adaptive radiation in African 

cichlid fish (Brawand et al., 2014) the authors note in the supplemental information that they 

used the O. niloticus genome as a proxy for other cichlids because they did not detect any 

major genomic rearrangements between them. Using cytogenetic mapping, (Mazzuchelli, 

Kocher, Yang, & Martins, 2012) concluded that there is strong chromosomal conservation 

among nine cichlid genomes. Further evidence for high synteny and coding sequence 
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conservation comes from a study on coding sequences of isotocin and vasotocin in African 

cichlids (O’Connor, Marsh-Rollo, Ghio, Balshine, & Aubin-Horth, 2015).  

Nonetheless, we decided to perform a genome-guided de novo transcriptome assembly to try 

to evaluate the type of reference sequences that we could produce with our raw sequencing 

data, as compared to the Nile tilapia reference genome. Using the Trinity pipeline, we 

generated the following transcriptome, and compared it to the Nile tilapia gene set (Table S4).  

Table S4: Assembly metrics of N. pulcher transcriptome using the Trinity pipeline compared to the Nile tilapia 

reference genome (Conte, Gammerdinger, Bartie, Penman, & Kocher, 2017). 

 N. pulcher O. niloticus 

Total number of contigs assembled 132 804 ~50 000 
Total transcriptome length 65 Mb 168 Mb 
Max contig length 8 489 92 220 
Min contig length 251 92 
Median contig length 363 2612  
N50 511 4278 

As expected, we obtained a shorter and much more fragmented transcriptome assembly with 

our data, as compared to the current Nile tilapia reference genome. We tried to reduce 

potential redundancy created by split alleles or gene isoforms, using CD-HIT-EST 

(http://weizhongli-lab.org/cd-hit/) on the assembled contigs. This program clusters very similar 

sequences into longer consensus sequences. We were able to reduce the number of contigs to 

110,781 (instead of 132,804) based on a relaxed 90% similarity threshold and on an 85% 

alignment coverage, but it still represents a high number of transcripts to annotate and work 

with. The annotation part would also be very problematic and would potentially generate 

inaccuracy in the identification of transcripts, and thus biased measures of gene expression. 

These results further support our initial approach of read mapping on a closely related species, 

in this case O. niloticus.  
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6. Code used for differential gene expression analysis in DESeq2 

a) creating DESeq2 objects: 

Create DESeq2 object with interaction. 'help' refers to helper type, 'cond' to condition 
 
deseqInt <- DESeqDataSetFromMatrix(countData = dataRNAseq, colData = colData, 
design = ~ help*cond, tidy = FALSE) 
deseqInt$help <- relevel(deseqInt$help, ref = "NH") # reorder factor levels 
so that nonhelp (NH) is reference 
deseqInt$cond <- relevel(deseqInt$cond, ref = "C") # reorder factor levels so 
that control (C) is reference 
 
Create DESeq2 object without interaction. 'group' is concatenated label of condition – C(ontrol) 
and T(est) with helper type HH(elper) and N(on)H(elper). 4 groups: CHH, CNH, THH, TNH. 
 
deseq <- DESeqDataSetFromMatrix(countData = dataRNAseq, colData = colData, 
design = ~ group, tidy = FALSE) 
deseq$group <- relevel(deseq$group, ref = "CNH") # reorder factor levels so 
that control nonhelp (CNH) is reference 
 

b) Pre-filtering: 

Before DEG analysis, remove genes that have no value for the comparison due to their low 
expression levels to reduce computation time. 
 
dds <- deseq[rowSums(counts(deseq)) >1,] 
 

c) DEG analysis: 
dds <- DESeq(dds, test = "Wald", fitType = "parametric") 
 

d) Contrasts: 

interaction model: 
i) Interaction 
 
resultsInter <- results(dds.Int, name="helpHH.testT") 
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ii) Is gene expression in nonhelpers and helpers different in control? 
 
resultsCNHvsCHH <- results(dds.Int, contrast = c("help", "HH","NH")) 
 
iii) How do helpers react to cooperation opportunity? 
 
resultsCHHvsTHH <- results(dds.Int, list(c("cond_T_vs_C", "helpHH.condT"))) 
 
iv) How do nonhelpers react to cooperation opportunity? 
 
resultsCNHvsTNH <- results(dds.Int, contrast = c("cond", "T", "C")) 
 
v) Is gene expression in nonhelpers and helpers different in the opportunity? 
 
resultsTNHvsTHH <- results(dds.Int, list(c("help_HH_vs_NH", "helpHH.condT"))) 
 

without interaction:  
i) Is gene expression in nonhelpers and helpers different in control?  
 
resultsCNHvsCHH <- results(dds, contrast = c("group", "CHH","CNH")) 
 
ii) How do helpers react to cooperation opportunity?  
 
resultsCHHvsTHH <- results(dds, contrast = c("group", "THH", "CHH")) 
 
iii) How do nonhelpers react to cooperation opportunity?  
 
resultsCNHvsTNH <- results(dds, contrast = c("group", "TNH","CNH")) 
 
iv) Is gene expression in nonhelpers and helpers different in the opportunity?  
 
resTHHvsTNH <- results(ddsN, contrast = c("group", "THH", "TNH")) 
 
 

For each contrast, the resulting gene lists were ordered according to the FDR-corrected p-
value, for instance: 
resultsOrdCNHvsCHH <- resultsCNHvsCHH[order(resultsCNHvsCHH$padj),] 
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7. Filtering before differential gene expression analysis 

 
In order to increase confidence in our results, we attempted to increase statistical power of the 

differential gene expression analysis by applying more stringent filtering to the read counts. The 

default approach recommended in the DESeq2 online manual 

(https://www.bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

#pre-filtering) is to pre-filter all genes that have equal to or less than 1 read in total (across all 

samples) and thus have no value for the comparison due to their low expression levels (see 5b). 

This mainly serves the purpose of reducing computation time, whereas the actual filtering 

based on Cook's distance is performed within the DESeq2 function. However, since this filtering 

method does not consider any biological information (e.g. number of test fish per group that 

express a certain gene) we tried out a range of filters to explore whether they lead to the 

exclusion of more genes but, most importantly, also to an increase of DEGs. To do so, we 

defined 3 different criteria for genes to exclude from the final dataset: in a specific test 

condition – helper phenotype combination (i.e. cleaners in control, cleaners in test, non-

cleaners in control and non-cleaners in test): a) ½, b) 2/3 and c) all individuals had to express 

the gene. Genes not fulfilling the criterion were removed from the DESeqDataSet object and 

hence from all contrasts (Table S5). This led to a removal of 10288 genes in the original analysis 

and 17397 for a), 18976 for b) and 21817 for c). The differential gene expression analysis was 

then conducted on the filtered gene lists and Table S5 lists the number of differentially 

expressed genes in the different filtering scenarios for FDR < 0.1 and FDR < 0.05. Even though 

the filters led to the removal of more genes and smaller datasets, the amount of DEGs stayed 

more or less the same as in the original analysis, regardless of the stringency of the filter. 
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Table S5: Number of DEGs for each of the contrasts and two different levels of FDR for the original pre-filter 

suggested in the DESeq2 manual, for a filter based on a) 50%, b) 2/3 and c) 100% of individuals in each condition-

phenotype combination. The number of genes that the DESeq2 inbuilt filter removed is given below for each 

contrast (# of genes removed). 
contrast FDR original a) b) c) 
control  
non-cleaners vs cleaners 

< 0.1 
< 0.05 

1 
1 

2 
1 

2 
2 

1 
1 

# genes removed  2 0 0 0 
non-cleaners  
control vs opportunity 

< 0.1 
< 0.05 

15 
12 

12 
15 

12 
15 

12 
15 

# genes removed  10912 4077 2263 0 
cleaners  
control vs opportunity 

< 0.1 
< 0.05 

24 
10 

24 
13 

21 
11 

13 
9 

# genes removed  4912 1223 0 0 
opportunity  
non-cleaners vs cleaners 

< 0.1 
< 0.05 

0 
0 

0 
0 

0 
0 

0 
0 

# genes removed  0 0 0 0 
interaction < 0.1 

< 0.05 
0 
0 

0 
1 

0 
1 

0 
0 

# genes removed  2 0 0 0 

 
Table S5 clearly demonstrates that applying stricter filtering to the lists of genes fed into the 

DEG analysis does not yield a higher number of DEGs. To the contrary, it seems that filtering 

that is too strict (2/3 or 100% of individuals have to express a particular gene) leads to the 

removal of genes that were identified as differentially expressed in some contrasts in the 

original analysis.  
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8. Permutation tests  

 
In order to check whether the number of differentially expressed genes (DEGs) in our 

experiment could have arisen by chance alone we conducted a permutation test. In this test we 

permuted the assignment of each individual to a specific experimental group/cleaner 

phenotype combination and carried out differential expression analysis in DESeq2 as specified 

for the real data in the Methods section of the main text. We repeated this process 2,000 times 

and compared the resulting null distribution of the number of DEGs obtained to the number of 

DEGs in the analysis with the real dataset. Fig. S2 shows the location of the results of the 

differential gene expression analyses with the original data in relation to these null distributions 

for the overall analysis (Panel A) as well as for single pair-wise comparisons (Panels B to E). It 

can be seen from these results that in cases where we find more than one DEGs in the real data 

(A sum over all pairwise comparisons, C cleaners control vs opportunity and D non-cleaners 

control vs opportunity), most of the null distributions yield a lower number of DEGs, i.e. lie to 

the left of the real value. This indicates that the number of DEGs is unlikely to have arisen by 

chance. In the comparison that resulted in only one (B control cleaners vs non-cleaners) or zero 

DEG (opportunity cleaners vs non-cleaners), this effect is certainly less pronounced because the 

distributions are bounded by zero. Hence, whereas this method is suitable to support the 

results of differential gene expression analysis when the number of DEGs lies in the tens, it is 

less suitable when the number of DEGs is even lower than that because there is much less 

opportunity for random results being smaller or equal to the real number of DEGs. 
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Fig. S2: Histograms of null distributions of differential gene expression analyses created by 2,000 random 
permutations of experimental group (control or opportunity) and cleaner type (cleaners or non-cleaners) 
combination. Dashed vertical lines denote the medians of the null distributions, and colored vertical lines the 
number of differentially expressed genes obtained with the real data. Panel A shows the sum of differentially 
expressed genes across all pairwise comparisons. Panel B shows non-cleaners vs cleaners in control, panel C 
cleaners in control vs opportunity, panel D non-cleaners in control vs opportunity and panel E non-cleaners vs 
cleaners in opportunity. For reasons of visibility the x-axis is cut off at a count of 50, even though the distributions 
have long tails (maximum indicated by 'max' in the in box in the upper right corner of each panel). The modes of 
the distributions, which is the most frequent number of genes identified as differentially expressed, as well as the 
percentage of the null distribution that yield lower or equal numbers of differentially expressed genes than the 
real data ('% smaller') are also given in the box. 
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9. Correlations of behaviours and gene expression 

  
The number of reads of genes identified as differentially expressed did not correlate with the 

amounts egg-cleaning or with defence behaviours. This indicates that the most informative part 

of the variation is indeed expressed in the dichotomy of cleaners vs. non-cleaners rather than in 

a quantitative measure of these behaviours.   

 
Table S6: Correlations of gene expression (of DEGs) and amounts of cleaning / defence behaviours during the 
opportunity. 
 egg cleaning defence 
gene name rho p-value rho p-value 
irx2 0.09 0.696 0.04 0.867 
c-fos 0.05 0.843 0.39 0.086 
H38 -0.04 0.879 0.14 0.563 
mb9.15 0.36 0.119 0.28 0.240 
csrnp1b -0.09 0.715 0.02 0.940 
epsti1 0.39 0.091 -0.37 0.111 
rsad2 -0.06 0.803 -0.22 0.362 
ido2 -0.12 0.613 0.18 0.460 
neurod1 0.25 0.295 -0.23 0.331 
dach1 -0.26 0.259 -0.15 0.527 
npas4 0.19 0.433 0.22 0.362 
npasdc4b 0.28 0.230 -0.01 0.960 
npasdc4b-like -0.10 0.662 -0.07 0.765 
plk2 0.17 0.479 0.06 0.791 
egr1 0.22 0.360 -0.12 0.629 
egr2 0.22 0.341 0.26 0.264 
ier2 0.13 0.595 0.08 0.722 
uncharacterized  
(XR_002063607.1) 0.03 0.884 -0.31 0.178 

  



 
 

15 
 

10. Comparison of gene sets in cleaners and non-cleaners 

 
Table S7: Genes that were up-regulated in non-cleaners during the opportunity showed similar 
regulation in cleaners (A). Numbers in parentheses denote fold-change in the original 
comparison (see Table 2). Genes that were differentially regulated in cleaners during the 
opportunity mainly showed no expression differences in non-cleaners (B). Numbers in 
parentheses denote fold-change in the original comparison (see Table 1). The full lists of genes 
(i.e. including those with FDR > 0.05) are given in Table S9. 
 
 GenBankID abbr mean FC  lfcSE stat pvalue padj 

A XM_003444618.4 npas4 2495.747 1.3 (1.4) 0.096 4.037 5.42E-05 0.098 

XM_019367106.1 nps4b 33.575 1.4 (1.6) 0.119 3.873 0.0001 0.160 

XM_003452282.4 egr-1 1512.105 1.3 (1.4) 0.099 3.333 0.0009 0.346 

XM_005452100.3 plk2 2954.527 1.2 (1.4) 0.096 3.152 0.002 0.424 

XM_019367107.1 nps4l 27.634 1.3 (1.5) 0.124 2.770 0.006 0.625 

XM_003454061.4 egr-2 37.455 1.3 (1.5) 0.126 2.607 0.009 0.652 

XM_003452801.4 ier2 23.450 1.2 (1.5) 0.126 1.906 0.057 0.847 

XR_002063607.1 unch 13.765 1.0 (1.3) 0.085 0.217 0.828 0.998 

B XM_003453237.3 rsad2 6.846 1.0 (1.3) 0.084 0.797 0.425 1 

XM_005450549.3 irx2 9.136 -1.0 (-1.4) 0.083 -0.105 0.917 1 

XM_005474264.3 dach1 205.732 -1.1 (-1.4) 0.107 -0.837 0.403 1 

XM_003439202.4 csrnp1b 800.369 1.2 (1.3) 0.087 2.809 0.005 1 

XM_005457455.3 ido2 4.8345 1.0 (1.4) 0.116 0.605 0.545 1 

XM_003451558.4 neurod1 75.538 -1.0 (-1.3) 0.089 -0.703 0.482 1 

XM_005475227.3 epsti1 13.615 -1.1 (1.4) 0.095 -1.071 0.284 1 
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11. Additional tables 

Table S8: Complete gene lists from DESeq2 analysis for differential gene expression including 
phenotype-by-condition interaction. The lists include Entrez gene ID, annotation, mean 
expression across groups, fold change, log2 fold change, SE of log2 fold change, Wald statistic, 
p-value and FDR-adjusted p-value. Each gene list is presented on a separate sheet: A 
interaction, B control non-cleaners vs. cleaners, C non-cleaners control vs. non-cleaners 
opportunity, D cleaners control vs. cleaners opportunity, E opportunity non-cleaners vs. 
cleaners.   
 
Table S9: Complete gene lists from DESeq2 analysis for differential gene expression without 
phenotype-by-condition interaction. The lists include Entrez gene ID, annotation, mean 
expression across groups, fold change, log2 fold change, SE of log2 fold change, Wald statistic, 
p-value and FDR-adjusted p-value. Each gene list is presented on a separate sheet: A control 
non-cleaners vs. cleaners, B non-cleaners control vs. non-cleaners opportunity, C cleaners 
control vs. cleaners opportunity, D opportunity non-cleaners vs. cleaners.   
 
Table S10: Lists of Gene Ontology (GO) terms of genes found differentially expressed in 
comparisons of A control non-cleaners vs. cleaners, B non-cleaners control vs. non-cleaners 
opportunity, C cleaners control vs. cleaners opportunity. 
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