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Appendix A – Details of mathematical analysis 

Notational conventions 

Two important notational conventions are used consistently throughout this paper. First, we 

carefully distinguish between a random variable itself and its realization by the use of upper- and 

lowercase letters. For example, the state of the environment at age t is a random variable, denoted 

by Et, which can take two values (A or B); the value that is realized for a particular organism under 

consideration will be denoted et. Accordingly, Et = et should be read as ‘the event that the 

environment is in state et at time t’.  

Second, boldface will be used to represent a sequence of environmental states or observations. For 

example, E = (E1, E2, …, ET) represents the sequence of environmental states over the entire 

lifetime of the organism. The use of a subscript t in combination with a boldface symbol indicates 

that we only consider the sequence of environmental states or observations up to age t. Upper- and 

lowercase boldface letters distinguish between sequences of random variables and their realizations. 

Finally, the shorthand notation Ot = ot stands for a sequence of events    O1=o1 ∩ O2=o2 ∩…∩ Ot=ot .  

Derivation of the Bayesian update rule 

Although the organism cannot observe the state of the environment directly, it can determine the 

likelihood that the environment is in a particular state based on the sequence of observations it has 

made so far. The distribution of environmental states given an individual’s history of observations 

ot = (o1, …, ot) up to the present point in time is characterized by the conditional probability 

pt = P[Et = A | Ot = ot], which we will refer to as the individual’s personal ‘estimate’ of the state of 

the environment at age t. We note that the estimate pt integrates the information acquired so far by 

the organism into a single state variable, which we will later assume to be one of the inputs of the 

reaction norm governing phenotypic adjustment.  

Equation (2) in the main text specifies how the estimate pt depends on current and prior information 

contained in, respectively, the most recent observation ot and the estimate pt–1 at the previous time 

step. To derive this result, we start from the joint probability of the events Et = A and Ot = ot, which 

we rewrite in two different ways, using the standard rules for probabilities of statistically dependent 

events: 
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P Et=A∩Ot=ot⎡⎣ ⎤⎦ = P Et=A∩ Ot=ot ∩Ot-1=ot-1( )⎡⎣ ⎤⎦ =

P Ot-1=ot-1⎡⎣ ⎤⎦ P Et=A∩Ot=ot |Ot-1=ot-1⎡⎣ ⎤⎦ =

P Ot-1=ot-1⎡⎣ ⎤⎦ P Ot=ot |Ot-1=ot-1⎡⎣ ⎤⎦ P Et=A |Ot=ot⎡⎣ ⎤⎦ (a)

P Ot-1=ot-1⎡⎣ ⎤⎦ P Et=A |Ot-1=ot-1⎡⎣ ⎤⎦ P Ot=ot | Et=A∩Ot-1=ot-1⎡⎣ ⎤⎦ (b)

⎧
⎨
⎪

⎩⎪

  (A1) 

Here, we have repeatedly used the fact that the composite event Ot = ot can be written as the 

intersection of two events, t tO o= ∩ 1 -1=t - tO o .  

The equality between (a) and (b) in equation (A1) implies that 
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  (A2) 

which is a form of Bayes’ theorem with probabilities conditioned on Ot-1 = ot-1.  

The term on the left-hand side of equality (A2) has previously been defined as the estimate pt. On 

the right-hand side are three conditional probabilities that can be expressed in terms of the sampling 

accuracy, the environmental switching rates and the previous estimate pt-1. First, the term in the 

numerator of the last term can be simplified by realizing that the sequence of previous observations 

provides no information about the current observation Ot if the state of the environment is known. 

This means that the events Ot = ot and Ot-1 = ot-1 are conditionally independent given Et = A. In 

other words,  

 [ ] [ ]P | A P | A ,t t t t t tO o E O o E= = ∩ = = =-1 -1=t tO o   (A3) 

which is equal to either a (the sampling accuracy) or 1 – a, depending on whether the current state 

of the environment is perceived correctly (ot = A) or not (ot = B).  

Second, we rewrite the conditional probability in the denominator of the last term of equation (A2), 

in order to make explicit how the probability of making observation ot depends on the state of the 

environment. This can be done as follows 

 

    

P Ot=ot |Ot-1 =ot-1⎡⎣ ⎤⎦ = P Ot=ot ∩ Et=A∪ Et=B( ) |Ot-1 =ot-1
⎡⎣ ⎤⎦

= P Ot=ot ∩ Et=A |Ot-1 =ot-1⎡⎣ ⎤⎦ + P Ot=ot ∩ Et=B |Ot-1 =ot-1⎡⎣ ⎤⎦
= P Et=A |Ot-1 =ot-1⎡⎣ ⎤⎦ P Ot=ot | Et=A∩Ot-1 =ot-1⎡⎣ ⎤⎦
+P Et=B |Ot-1 =ot-1⎡⎣ ⎤⎦ P Ot=ot | Et=B∩Ot-1 =ot-1⎡⎣ ⎤⎦

= P Et=A |Ot-1 =ot-1⎡⎣ ⎤⎦ P Ot=ot | Et=A⎡⎣ ⎤⎦
+ 1− P Et=A |Ot-1 =ot-1⎡⎣ ⎤⎦( ) P Ot=ot | Et=B⎡⎣ ⎤⎦ ,

  (A4) 
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where, in the final step, we have again used the fact that Ot = ot and Ot-1 = ot-1 are conditionally 

independent given that the state of the environment is known. 

One final consideration needed for deriving the right-hand side of the Bayesian update rule (2) is 

that P[Et = A | Ot-1 = ot-1], which appears as the first factor on the right-hand side of equation (A2) 

and again on the final lines of result (A4), is related to the previous estimate  

pt-1. The exact relationship can be derived as follows: 
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  (A5) 

The crucial step in this derivation (marked by (*)) is to recognize that the events Et = A and  

Ot-1 = ot-1 are conditionally independent given that the state of the environment at age t – 1 is 

known. Substituting the relationships (A3)-(A5) into equation (A2) and evaluating the resulting 

expression for either ot = A or ot = B, yields  

 

  

pt =

a 1− β( ) pt−1+α 1− pt−1( )( )
a + 1− 2a( ) β pt−1 + 1−α( ) 1− pt−1( )( ) if ot = A,

1−
a β pt−1 + 1−α( ) 1− pt−1( )( )

a + 1− 2a( ) 1− β( ) pt−1+α 1− pt−1( )( ) if ot = B,

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (A6) 

corresponding to the definition of the Bayesian update rule U(pt-1, ot) provided in equation (2) in the 

main text.  

From individual reproductive success to long-term average fitness 

The phenotype sequence of an individual is fully determined by its reaction norm and the sequence 

of observations o = (o1, o2, …, oT) it has made about the state of the environment. This follows from 

equations (2) and (3) in the main text, which, for t > 0, define xt by the recursions  

 ( ) ( )1 1 1U , and , .t t t t t t t tp p o x x h x p− − −= = +  (A7) 
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Unless the sampling accuracy is equal to one, every possible observation sequence will occur in 

every environment, although generally not with equal frequency.  

Let Rt(o, e) denote the lifetime reproductive success from age t onwards of an individual with 

observation sequence o in environment e = (e1, e2, …, eT). This measure of future reproductive 

success satisfies the recursion 

 ( ) ( ) ( ) ( )1, , , , .t te e
t t t t t t t tR S x x F x x R +⎡ ⎤= Δ Δ +⎣ ⎦o e o e  (A8) 

Here, te
tF  and te

tS , respectively, denote the age-specific fecundity and survival probability. The 

terminal reward RT+1(o, e) is defined to be zero for all o and e. We assume that viability selection 

occurs after phenotypic adjustment but before offspring production. As reflected by our notation, 

the age-specific fecundities and survival probabilities depend on the current state of the 

environment et, the current phenotype and the magnitude of phenotypic adjustment at age t, 

1t t tx x x −Δ = −  (this is to incorporate costs of plasticity).  

Individuals subject to the same sequence of environmental states may develop differently as a result 

of errors in the assessment of environmental cues. In order to calculate the long-term fitness of the 

reaction norm h, it is therefore necessary to first average the lifetime reproductive success over the 

possible realizations of the sequence of observations in a given environment. Next, we need to 

average over all realizations of the sequence of environmental states that populations may be 

exposed to. As explained in the main text, the fitness function W  to be optimized is therefore given 

by  

 ( )
[ ]P

1P , ,W R
=

⎛ ⎞= ⎡ = = ⎤⎜ ⎟⎣ ⎦⎝ ⎠
∑∏

E e

oe

O o E e o e  (A9) 

where P[E = e] is the probability that an individual will experience the sequence of environmental 

states e, and P[O = o | E = e] is the probability that such an individual will adjust its phenotype 

based on the observation sequence o in that environment. 

Weak selection approximation 

In order to facilitate the optimization of fitness function (A9), we will assume that selection is weak. 

This implies that the fitness variability among individuals in different environments or expressing 

different phenotypes is modest, such that the fecundities and survival probabilities can be expressed 

in terms of small deviations from a suitably chosen reference life history. In other words, we write: 
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( ) ( ) ( )( )( )
( ) ( ) ( )( )( )
, 1 , ,

, 1 , ,
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e e
t t t t t t t t t

e e
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S x x S S x x S i e

α
α β

α
α β

+

+

′′Δ = + ∂ Δ + ∂ −

′′Δ = + ∂ Δ + ∂ −
 (A10) 

where tF  and tS  represent, respectively, the average fecundity and survival probability across 

environments of a hypothetical reference individual with fixed phenotype xt = z throughout its 

entire life. The functions te
tF∂  and te

tS∂  represent relative deviations from these benchmark values 

for an individual with a plastic phenotype. The first one of these functions is defined as 

  
∂Ft

et xt ,Δxt( ) = Ft
et xt ,Δxt( )− Ft

et z,0( )( ) Ft , which quantifies the relative fecundity effect of 

expressing the adjusted phenotype xt instead of the fixed phenotype z, as well as the fecundity cost 

of adjusting the phenotype from xt – 1 to xt. The definition for te
tS∂  and its interpretation are 

analogous.  

The deviations te
tF∂  and te

tS∂  measure fitness differences within environments. Equations (A10) 

are therefore made consistent by including additional deviation terms with coefficients 

( ) ( )( )A B,0 ,0t t t tF F z F z F′′∂ = −  and ( ) ( )( )A B,0 ,0t t t tS S z S z S′′∂ = −  that quantify the relative 

fecundity and survival differences between environment A and B of individuals with phenotype z. 

These coefficients are multiplied by a weighting term in which the indicator function i(et) takes the 

value 1 if et = A and the value 0 if et = B. Note that the term α / (α + β) corresponds to the 

probability that the environment is in state A at any point in time.  

For the purpose of linearization, we now introduce a positive parameter ε, which we choose as 

small as possible, but such that it bounds the absolute values of all fitness deviations between the 

plastic and reference life histories. If selection is weak, ε is much smaller than 1, allowing us to 

ignore terms of O[ε2]. The resulting approximation errors are minimized by choosing the reference 

phenotype z equal to the value that maximizes lifetime reproductive success for an individual with a 

fixed phenotype.  

We now seek to express the reproductive success of a plastic individual in terms of a small marginal 

deviation  ∂Rt  of O[ε] from the reproductive success of an individual following the reference life 

history. In other words, Rt (o, e) is approximated by 

 ( ) ( )( ), 1 , ,t t tR R R≈ +∂o e o e  (A11) 

where  Rt , the average reproductive success associated with the reference life history, is defined by 

the recursion 

   Rt = St Ft + Rt+1( )   (A12) 
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and   RT+1 = 0 . 

An expression for  ∂Rt  can be found by substituting the expressions (A10) and (A11) into equation 

(A8), writing out the products, and retaining only the terms of O[ε] (this means ignoring all terms 

that depend only on the characteristics of the reference life history, and dropping all interaction 

terms involving products of the deviations  ∂Ft
et , te

tS∂ ,  ∂ ′′Ft ,  ∂ ′′St ,  ∂Rt  and   ∂Rt+1). After some 

rearrangement, we obtain 

 
   
∂Rt o,e( ) = Rt+1 St

Rt
∂Rt+1 o,e( ) + ∂St

et xt ,Δxt( ) + Ft St

Rt
∂Ft

et xt ,Δxt( ) + i et( )− α
α+β( ) ∂ ′′St+

Ft St

Rt
∂ ′′Ft

⎡

⎣
⎢

⎤

⎦
⎥ . (A13) 

In this expression, effects on fecundity are weighted with respect to the relative contribution of 

current reproductive success ( t tF S ) to the remaining reproductive success from age t onwards ( tR ). 

Similarly, the future fitness effect is weighted by the relative contribution of future fitness ( 1t tR S+ ) 

to the remaining reproductive success.  

The next step is to linearize the fitness function (A9) by substituting an approximation for R1(o, e) 

as in equation (A11). This yields, 
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 (A14) 

The final line of this result indicates that the fitness of the reaction norm can be approximated by 

averaging the fitness effects on lifetime reproductive success over the joint distribution of 

environmental states and observation sequences. Accordingly, the environmental effect term in the 

expression for the future reproductive success (the final term on the second line of equation (A13)) 

averages out in the fitness function, because i(et) takes the value 1 in a fraction α / (α + β) of the 

cases, and the value 0 in the remaining ones. From here on, we will therefore omit this contribution 

to the reproductive success.  

To accomplish the averaging over the joint distribution of E and O for the remaining contributions 

to 1R∂ , we use a stepwise procedure that is based on the recursive definition of fitness in equation 

(A13). First, we focus on an individual at age t, after it has sampled the state of the environment but 
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before has adjusted its phenotype. The state of such an individual is summarized by two variables: 

xt – 1 and pt, which defines the sequence of observations made up to age t as well as the distribution 

of environmental states at time t. This follows because P[Et = A | Ot = ot] = pt by definition. 

The expected reproductive success of the focal individual from age t onwards (again, relative to the 

reference life history) is denoted by ( )1,t t tR x p−∂ . Following equations (A13) and  

(A14), we define this function as 

( )

[ ] ( ) ( ) ( )
{ }
{ }

1

1

1 1 1
,
,

,

P | , , ,t t t t

t t

t t t

R S F Se e
t t t t t t t t t t tR R

e A B
o A B

R x p

E e O o R x p S x x F x x+

−

+ + +
∈
∈

∂ =

⎛ ⎞= ∩ = ∂ + ∂ Δ + ∂ Δ⎜ ⎟⎝ ⎠
∑ =t tO o  (A15) 

such that the relative fitness difference between an individual with reaction norm h and the 

reference life history can be written as 

 [ ] ( )( )
{ }

1
1 1 0 0

A,B1

P ,U , ,
o

W RW O o R x p o
R ∈

−∂ = = = ∂∑  (A16) 

with p0 = α / (α + β ), as explained in the main text.  

As indicated by equation (A15), the expected future reproductive success in a given state  

(t, xt – 1, pt) is a weighted average of the reproductive success along four possible life-history paths 

that emerge from the two possible states of the environment at time t and the two possible 

observations in the next time step (note that the realization of Ot+1 determines the next estimate 

pt+1). Writing out xt and pt+1 as specified by equation (A7), equation (A15) is expanded as 

 

( ) [ ] ( ) ( )( )
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 (A17) 

Expressions for the probabilities P[Et = e | Ot = ot] and P[Ot+1 = o | Ot = ot] that appear in this result, 

follow directly from the definition of pt or from equations (A4) and (A5): 
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Considering that 1 / 1 /t t t t t tR S R F S R+ = − , equation (5) in the main text is a special case of equation 

(A17) for linear fecundity and survival functions, 

 
( ) ( ) ( )( )( )
( ) ( ) ( )( )( )
, 1 and

, 1 ,

t t

t t

e e
t t t t t t t t t t

e e
t t t t t t t t t t
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α
α β

α
α β

+

+

′ ′′Δ = + − − Δ + −
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 (A19) 

where the marginal costs of plasticity do not depend on the state of the environment.  

Calculation of the width of the reaction norm’s plateau 

The optimal reaction norm exhibits a plateau at intermediate values of pt if the survival and 

fecundity functions are linear in xt and Δxt. The width of this plateau is easily calculated for t = T. 

Consider, for example, the semelparous life history introduced in the main text. At age T, the net 

benefit of plasticity is given by (equation (8) in the main text) 

 ( ) ( ) ( ) ( )( )1 1 1 1, , 2 1 , .T T T T T T T T T T TR x p c h x p s p x h x p z− − − −∂ = − + − + −  (A20) 

This function is piecewise linear and continuous, because of the absolute value in the cost part. For 

hT < 0, the fitness function can thus be written as ( ) ( )1 1, ,T T T T T TR x p a b h x p− − −∂ = +  with b–

 = c + s (2 pT – 1). Similarly, for hT > 0, the slope of the fitness function is  

b+ = –c + s (2 pT – 1).  

The maximum of the piecewise linear fitness function can be located either at xT = 1, at xT = 0 or at 

an intermediate phenotype value, where xT = xT – 1. The latter option, which is realized on the plateau 

of the reaction norm, requires that b– is positive and that b+ is negative. Hence, it follows that the 

optimal phenotypic adjustment is zero whenever the estimate pt satisfies the conditions 

 ( ) ( ) 1 1 1 1
2 2 2 22 1 0 2 1T T Tc s p c s p c s p c s+ − > > − + − ⇔ − < < −  (A21) 
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Note that the condition for the existence of a plateau depends only on the forecasting probability, 

not on the current phenotype. Subtracting the lower from the upper threshold in the above condition 

gives the result that the width of the plateau is c / s. 

Nonlinear fitness functions 

In this final section of the supplementary material, we concentrate once more on semelparous life 

histories, and briefly examine the robustness of the results with respect to nonlinearities in the 

fitness function. Such nonlinearities may arise, for example, if the combined cost of two (or more) 

smaller phenotypic adjustments x → y → z (with y intermediate between x and z) is different from 

the cost of an equivalent adjustment x → z in a single step. Alternatively, selection on the 

phenotype in either one or both of the environments may be stabilizing rather than directional, 

generating nonlinear benefits of expressing an adaptively adjusted phenotype.  

Figure A1 presents two cases where nonlinearities have a pronounced effect on the realized 

phenotype sequences. The first occurs when the cost of plasticity increases disproportionally with 

the amount of phenotypic adjustment. Even if the associated nonlinearity is weak, such super-

multiplicative costs have several clear effects on the optimal reaction norm (figure A1a, grey 

phenotype tree in the middle panel; figure A2a): the optimal initial phenotype is at an intermediate 

value, and larger phenotypic changes are broken down into a series of smaller adjustments 

(individuals change their phenotype each timestep, sometimes in a direction that is inconsistent with 

their last observation). As a result, peaks in the life history schedule of plasticity (figure A1a; right) 

are smoothed out over several age classes. As an aside, we note that the optimal reaction norm for a 

multiplicative fitness function (figure A1a, left) is indistinguishable from the result obtained for 

linear fitness functions as in equation (7). This is to be expected under weak selection, as the two 

types of fitness functions are identical up to first order in s and c.  

Figure A1b compares the phenotype trees calculated for two fitness functions with diminishing 

benefits of expressing an adjusted phenotype, one with multiplicative (black) and the other with 

super-multiplicative (grey) costs of plasticity. In this case, the realized phenotype distribution no 

longer peaks at the extreme values, because the cost of phenotypic adjustments is at some point no 

longer compensated by the benefit of expressing a more perfectly adapted phenotype. When the 

costs of plasticity are multiplicative (figure A1b; left), individuals sometimes do not change their 

phenotype, indicating that the reaction norm has a plateau at intermediate values of pt, as for linear 

fitness functions (figure A2b). 



Fischer et al.  Evolution of age-dependent plasticity 

 10 

 

 

 

 

Figure A1. Dependence of optimal plasticity patterns on nonlinearities in the fitness function.   

Trees of phenotypes resulting from the optimal reaction norm for a semelparous life history with nonlinear 

survival functions B A 1 1( , ) (1 , ) exp( 2 2 )t t t t t t t tS x x S x x s x c xη η θ θ− −Δ = − Δ = − − Δ . (a) Comparison between a 

multiplicative fitness function (η = θ = 1; left column) and one with super-multiplicative costs of plasticity 

(θ = 1.2; right column); in the latter case, large phenotypic adjustments are disproportionally costly. (b) 

Comparison between fitness functions with diminishing benefits of expressing an adapted phenotype (η = 

1.2) with either multiplicative (θ = 1; left column) or super-multiplicative (θ = 1.2; left column) costs of 

plasticity. The right column shows the average absolute phenotypic adjustment, with black bars 

corresponding to the left column and grey bars to the middle column. Parameters: T = 8, α = 0.16, β = 0.14, 

a = 0.8, s = 0.03, and c = 0.05. 
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Figure A2. Optimal reaction norms for nonlinear fitness functions.  

Nonlinearities in the fitness function introduce a dependence of the phenotype xt after adjustment on the 

original phenotype xt–1. The colored nearly opaque surfaces show optimal reaction norms at age 1 for the 

nonlinear survival functions used in figure A1. In each panel, the optimal reaction norm for a multiplicative 

fitness function with η = θ = 1 is shown as a colored nearly transparent surface. Contours are drawn at the 

levels ±0.8, ±0.6, ±0.4, ±0.2, and ±0.001. Parameters: (a) η = 1, θ = 1.2; (b) η = 1.2, θ = 1; (c) η = θ = 1.2. 
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Table A1 – Life-history parameters for the iteroparous life history in figure 6a 

 
t ϕt

b σt
c Rt

d  t ϕt σt Rt 
1 0.000 1.000 1.000  7 0.153 0.919 0.330 
2 0.057 0.977 1.000  8 0.103 1.000 0.205 
3 0.241 1.000 0.966  9 0.047 0.970 0.102 
4 0.208 0.976 0.725  10 0.046 0.849 0.058 
5 0.117 1.000 0.535  11 0.030 0.750 0.023 
6 0.134 0.903 0.418  12 0.000 0.619 0.000 

 

a Parameters are based on published estimates for the estuarine polychaete Streblospio benedicti (Levin 
et al. 1996; figure 5). 

b Fecundity, normalized such that the expected lifetime reproductive success equals 1.  
c Survival probability from age t – 1 to age t. 
d Residual reproductive success at age t, calculated from the other two columns by means of the 

recursion Rt = σt (ϕt + Rt+1).  


